

Pompe di calore

- Pompe di calore reversibili sorgente aria
- Pompe di calore reversibili sorgente aria solo riscaldamento
- Pompe di calore reversibili sorgente acqua
- Pompe di calore reversibili sorgente acqua solo riscaldamento
- Pompe di calore sorgente acqua reversibili lato acqua

Area business

L'area business del sito Mitsubishi Electric Climatizzazione

Soluzioni per impianti commerciali, terziario, industriali e IT Cooling

Un portale sempre aggiornato con tutti i prodotti e le informazioni necessarie per la progettazione degli impianti di climatizzazione.

Il sito di Mitsubishi Electric Italia per il settore business della climatizzazione offre una vasta gamma di contenuti, utili per aziende e professionisti che cercano soluzioni efficienti ed innovative.

Ecco i principali contenuti disponibili:

- Prodotti: refrigeratori, pompe di calore, unità polivalenti, condizionatori per data center, rooftop, unità di trattamento aria, terminali idronici, sistemi di controllo e supervisione.
- Marchi: Mitsubishi Electric, Climaveneta e RC IT Cooling.
- Documentazione: brochure, manualistica, data book, certificazioni, disegni tecnici, specifiche per capitolati, presentazioni di prodotto e contenuti didattici in formato video.
- Segmento di applicazione: Comfort, Processo e IT Cooling.
- Settore di applicazione: centri commerciali, data center, hotel, processi industriali, uffici e applicazioni residenziali.
- Software di selezione.
- Servizi di assistenza: collaudi presenziati, contratti di Manutenzione e Assistenza.
- Case study: esempi pratici di applicazioni di successo nei vari settori

Visita il sito https://climatizzazione.mitsubishielectric.it/business/it e scopri le soluzioni più adatte alle tue esigenze. Per accedere ai contenuti riservati per la progettazione è necessario avere le credenziali di accesso all'area riservata ed effettuare il login.

Non hai le credenziali di accesso all'area riservata?

Scansiona il QR Code, registrati ed accedi a tutti i contenuti riservati dedicati ai professionisti del settore!

Legenda e caratteristiche

Categoria

Refrigeratori e refrigeratori con free cooling

Terminali idronici

Pompe di calore

Condensatori remoti, dry cooler, motocondensanti

Unità per la produzione simultanea ed indipendente di acqua calda e refrigerata

Centrali trattamento aria (CTA)

Unità rooftop

Sistemi di supervisione, controllo ed ottimizzazione

Funzione

Raffreddamento

Riscaldamento

Acqua calda sanitaria

Umidificazione

Free-cooling

Post-riscaldamento

Riscaldamento a 65°C

Riscaldamento a 78°C

Produzione simultanea

Free-cooling evaporativo

Sistema a 2 tubi

Sistema a 4 tubi

Compressore

Compressore scroll

Compressore a vite

Compressore centrifugo

Refrigerante

G01 R-134a

G02 R-410A

G03 R-407C

G04 R-1234ze

G05 R-513A

G06 R-454B

G07 R-32

Ventilatori

Plug fan sezione interna

Plug fan AC

Plug fan EC

Ventilatore assiale sezione esterna

Ventilatore assiale AC

Ventilatore assiale EC

Ventilatore tangenziale

Ventilatore tangenziale EC

Ventilatore centrifugo AC

Ventilatore centrifugo EC

Scambiatori di calore

Scambiatore di calore a piastre

Scambiatori di calore a fascio tubiero

Evaporatore allagato

Evaporatore ibrido a film cadente

Recupero

Recupero a piastre

Recupero rotativo

Booster di refrigerante

Effetto termodinamico

Recupero a batterie RAR

Controllo

Compressore azionato da inverter

ON/OFF

Pompe di calore

• Limiti di funzionamento fino a -20°C • Produzione di acqua calda fino a 78°C • Massima efficienza energetica

Pompe di calore reversibili con sorgente aria

Prodotti e descrizione	Web	Funzione	Refrigerante	Range / potenze	Controllo	Compressore	Ventilatore	Scambiatore
MEHP-iB-G07 Plate HX			R32 ₀	7 – 40 kW		(6)		P
MEHP-iS-G07 Plate HX		(65)	R32	50 – 220 kW		(6)		P

CLIMAVENETA

Pompe di calore reversibili con sorgente aria

Prodotti e descrizione	Web	Funzione	Refrigerante	Range / potenze	Controllo	Compressore	Ventilatore	Scambiatore
i-BX-N Plate HX			R41DA	4 – 35 kW		(6)		P
NX-C-N Plate HX			R41DA	18 – 265 kW	ON OFF	(6)	©	P
i-NX-N Plate HX			R410A	111 – 128 kW		(6)		P
AWR HT Plate HX		* * * * * * * * * *	R407C	34 – 181 kW	ON OFF)	(6)		P
NX-N-G02			R41DA	36 – 220 kW	ON OFF	(6)		P
Plate HX			R410A	148 – 319 kW	ON OFF	(6)		P
NX-N-G02 Shell&Tube HX			R410A	148 – 335 kW	ON OFF)	(6)		(T)
NX-N-G06			R454B	45 – 211 kW	ON OFF	(6)		P
Plate HX			R454B	142 – 307 kW	ON OFF	(6)		P
NX-N-G06 Shell&Tube HX			R454B	142 – 322 kW	ON OFF	(6)		(T)

Panoramica Prodotti

NECS-N-G02	WANT OF THE PARTY	R410A	48 – 151 kW	ON OFF		
Shell&Tube HX		R410A	320 – 516 kW	ON OFF		
FOCS-N-G01/G05		R134a	441 – 586 kW	ON OFF		
Shell&Tube HX		R513A	441 – 1162 kW	ON OFF		
i-FX-N-G01/G05		R134a	444 – 1154 kW			
Shell&Tube HX		R513A	444 – 1154 kW			(T)

CLIMAVENETA

Pompe di calore non reversibili con sorgente aria, solo riscaldamento

Prodotti e descrizione	Web	Funzione	Refrigerante	Range / potenze	Controllo	Compressore	Ventilatore	Scambiatore
AW-HT Plate HX		(65°)	R407C	38 – 205 kW	ON OFF			P

CLIMAVENETA

Pompe di calore con sorgente acqua reversibili lato idraulico

Prodotti e descrizione	Web	Funzione	Refrigerante	Range / potenze	Controllo	Compressore	Ventilatore	Scambiatore
WWH-HT Plate HX		65	R410A	24 – 94 kW	ON OFF	(6)		P
NX-W/H-G02 Plate HX			R410A	38 – 398 kW	ON OFF	(6)		P
NX2-W-G06/H Plate HX			R454B	45 – 242 kW	ON OFF	(6)		P
FX-W/H-G01/G05			R134a	124 – 401 kW	ON OFF			
Shell&Tube HX			R513A	124 – 401 kW	ON OFF			(T)
FOCS2-W-G01/G05			R134a	2024 – 2416 kW	ON OFF			
Shell&Tube HX			R513A	306 – 2416 kW	ON OFF			(T)

i-FX-W (1+i)/H		R134a	532 – 1784 kW		F
G01/G05 Flooded HX		R513A	532 – 1784 kW		F
i-FX2-W/H-G04 Hybrid HX		123420	398 – 1242 kW		(HD)
TX2-W-G04/H Flooded HX		123428	255 – 2069 kW		F

CLIMAVENETA

Pompe di calore reversibili con sorgente acqua

Prodotti e descrizione	Web	Funzione	Refrigerante	Range / potenze	Controllo	Compressore	Ventilatore	Scambiatore
NX-WN-G02 Plate HX			R41DA	187 – 396 kW	ON OFF			P

CLIMAVENETA

Pompe di calore non reversibili con sorgente acqua, solo riscaldamento

Prodotti e descrizione	Web	Funzione	Refrigerante	Range / potenze	Controllo	Compressore	Ventilatore	Scambiatore
WW-HT-G02 Plate HX		(Ass)	R410A	27,52 – 109,2 kW	ON OFF	(6)		P
EW-HT-G02/G05	44 44 44	(/ 78)	R134a	70,18 – 279,2 kW	ON OFF			P
Plate HX	3 3 4	(} 78)	R513A	73 – 130 kW	ON OFF	(6)		P

Legenda e note

Funzionalità

COOLING

Raffrescamento

HEATING

Riscaldamento

HEATING

Riscaldamento 65°C

HEATING

Riscaldamento 78°C

HOT WATER

Acqua calda

Ventilatori

PLUG FAN

Ventilatore Plug Fan

AXIAL

Ventilatore assiale

EC AXIAL

Ventilatore EC axial

Refrigerante

HFC R-134a

R-134a

HFC R-4070

R-407C

HFC R-410A

R-410A

R R32

R32

R HF01234ze

HFO-1234ze

R R513A

R513A

R454B

R454B

Compressori

© SCROLL

Compressore scroll

Compressore a vite

Compressore centrifugo

Scambiatori

PLATES

Scambiatore a piastre

Scambiatore a fascio tubiero

Evaporatore allagato

Sez. Int.

PLUG FAN

Ventilatore Plug Fan

Sez. Est.

AXIAL

Ventilatore assiale

Caratteristiche ulteriori con pos. dx

Classe A efficienza energetica

Caratteristiche ulteriori

(CALLED

Eurovent

AHRI - Water-Cooled Water Chilling and Heat Pump Water-Heating Packages

Inverter Driven Compressor

VPF

VSpeed

Electronic Expansion Valve

Indice

108

112

116

i-FX-W (1+i)-G05/H

1402 - 4652

0402 - 1242

0251 - 2064

TX2-W-G04/H

i-FX2-W-G04/H

532,3-1784

397,8-1242

254,7-2069

kW

k\//

kW

R513A

HF01234ze

HF01234ze

FLOODED

FLOODED

POMPE DI CALORE

MEHP-iS-G07	0051 - 0112
AWR-HT	0122 - 0302
AWR-HT	0404 - 0604
NX-N-G06	0202P - 0812P
NX-N-G06	0604T - 1204T
NX2-N-G06	0344 - 0808
FOCS-N-G05	2022 - 2622
NX-CN	0072 - 1104
i-FX-N-G05	0472 - 1152
AW-HT	0122 - 0302
AW-HT	0404 - 0604
NX-WN	0122 - 1204
WWH-HT	0071 - 0302
EW-HT	0152 - 0612
EW-HT-G05	0182 - 0302
WWH-HT	0071 - 0302
NX-W /H	0122 - 1204
NX2-W-G06-H	0042 - 0242
FOCS2-W-G05	/H 8103 - 9604
FX-W-G05/H	0551 - 1752
i-FX-W (1+i)-G05/H	1402 - 4652
i-FX2-W-G04/H	0402 - 1242
TX2-W-G04/H	0251 - 2064

MEHP-iS-G07

0051 - 0112 49.90-110.0 kW

Pompa di calore reversibile ad aria per installazione esterna, ottimizzata in riscaldamento, con compressori Scroll a velocità variabile, ottimizzata per R32 in configurazione monocircuito, scambiatore lato sorgente realizzato con tubi in rame ed alette in alluminio, scambiatore lato utenza a piastre saldobrasate, valvola di espansione elettronica di serie, ventilatori a velocità variabile con motore BLDC e inverter esterno.

Macchina flessibile ed affidabile che si adegua alle più diverse condizioni di carico grazie all'accurata termoregolazione combinata allo sfruttamento della tecnologia ad inverter. La progettazione accurata e l'impiego di innovativi motori a velocità fissa unitamente a motori a velocità variabile (inverter), assicurano un alto livello di efficienza energetica sia a pieno carico che a carico parziale.

Comando

Controllore elettronico W3000+

Il controllore W3000+ si caratterizza per le evolute funzioni e regolazioni proprietarie.

La tastiera Compact dispone di comandi funzionali e un display LCD per la gestione dell'unità mediante menu multi-lingua (19 lingue disponibili). La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità. È inoltre possibile programmare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie. Come opzione, è disponibile l'innovativa interfaccia utente KIPlink (Keyboard In your Pocket) che permette di operare sull'unità direttamente da smartphone e tablet. Modulazione continua della capacità frigo basata su regolazione sequenziale + PID riferita alla temperatura di mandata dell'acqua. Per sistemi a più unità è possibile la regolazione delle risorse tramite dispositivi proprietari opzionali. può essere attuata la contabilizzazione consumi/prestazioni. Il controllo a portata idraulica variabile è previsto di standard (funzione VPF.E). La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet-over-IP, Bacnet MS/TP RS485, Konnex, ModBus TCP/IP, SNMP. Compatibilità con tastiera remota (gestione fino a 8 unità).

Versioni

- Efficienza standard

Configurazioni

Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

REFRIGERANTE A BASSO GWP

Refrigerante puro R32 che assicura una riduzione del GWP pari al 66%, una maggiore efficienza ed una carica di refrigerante inferiore a parità di cooling capacity rispetto al tradizionale R410A.

ELEVATISSIMA EFFICIENZA AI CARICHI PARZIALI

Efficienza energetica ai carichi parziali ai migliori livelli di mercato grazie a soluzioni tecnologiche proprietarie di ultima generazione: compressori scroll equipaggiati con inverter, ventilatori EC di serie e logiche di controllo avanzate.

MASSIMA SILENZIOSITA

Ottimo rapporto prestazioni-silenziosità, frutto di una progettazione sistematica orientata ad abbattere la rumorosità.

MASSIMA COMPATTEZZA

La precisa progettazione e la meticolosa attenzione ad ogni dettaglio rendono questa gamma la soluzione best-in-class in termini di footprint per kW.

ESTESO CAMPO DI FUNZIONAMENTO

Funzionamento in modalità pompa di calore con temperature dell'aria esterna da -20°C fino a 40°C. L'unità è in grado di produrre acqua riscaldata con temperature in uscita dal condensatore da 25°C a 65°C.

SOLUZIONE PLUG&PLAY

Gruppo idronico integrato che racchiude in sé i principali componenti idraulici; disponibile in diverse configurazioni con pompa in-line singola o gemellare, ad alta o bassa prevalenza, a velocità fissa o variabile, vaso di espansione ed accumulo inerziale.

CONTROLLI DI GRUPPO CON MASTER DINAMICO

Distribuzione del carico, sequenziazione, ridondanza attiva, priorità nell'attivazione delle risorse, gestione allarmi, sono solo alcune delle funzioni che l'unità è in grado di gestire se collegata ad un gruppo LAN di refrigeratori. Grazie alla logica di master dinamico, l'affidabilità del sistema è garantita anche in caso di allarme o malfunzionamento.

PORTATA VARIABILE

Regolazione avanzata delle pompe inverter a seconda del carico richiesto che consente di ridurre i consumi elettrici e garantire il funzionamento dell'unità anche in condizioni critiche.

SMART DEFROST

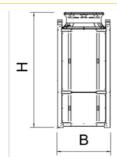
Le evolute logiche proprietarie di sbrinamento auto-adattive tengono in considerazione tutti i parametri operativi e le condizioni esterne: il numero e la durata dei cicli di sbrinamento sono dunque ridotti al minimo necessario garantendo un incremento dell'efficienza e della potenza termica resa dalle unità

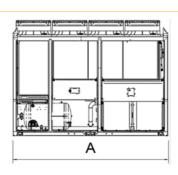
Accessori

- Batterie tradizionali con tubi in rame e alette in alluminio pre-verniciate o contrattamento protettivo Fin Guard Silver.
- Kit idronico con 1 o 2 pompe.
 Disponibile accumulo inerziale.
- Connettività remota con protocolli: ModBus, ModBus over IP (TCP/IP), Echelon, BacNet MS/TP RS485, Bacnet over IP, Konnex, SNMP
- Interfaccia utente KIPlink
- Funzione Notturna (night mode) per limitare il livello sonoro dell'unità.

- Demand Limit ottimizzato
- Dispositivo per la rilevazione fughe di refrigerante
- Staffe sollevamento laterale
- Funzione User Limit Control (U.L.C) per garantire l'avviamento sicuro dell'unità in condizioni critiche di temperatura acqua o aria.
- Griglie anti-intrusione
- Controllo produzione acqua calda sanitaria con valvola deviatrice a 3-vie

MEHP-iS-G07			0051	0061	0071	0082	0092	0102	0112
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/5
PRESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera	(1)	kW	48,10	53,11	60,09	68,39	74,18	85,99	93,98
Potenza assorbita totale	(1)	kW	17,00	19,95	25,48	24,91	30,10	31,86	37,61
ER	(1)	kW/kW	2,829	2,668	2,357	2,747	2,465	2,696	2,500
REFRIGERAZIONE (EN14511 VALUE)									
Potenza frigorifera	(1)(2)	kW	48,00	53,00	60,00	68,30	74,10	85,90	93,80
ER	(1)(2)	kW/kW	2,810	2,640	2,340	2,730	2,450	2,680	2,480
RISCALDAMENTO (GROSS VALUE)									
otenza termica totale	(3)	kW	49,92	59,86	69,87	79,89	89,85	100,1	110,0
otenza assorbita totale	(3)	kW	14,39	17,65	21,98	23,95	28,53	29,65	34,19
OP	(3)	kW/kW	3,465	3,403	3,177	3,343	3,151	3,382	3,216
RISCALDAMENTO (EN14511 VALUE)									
otenza termica totale	(3)(2)	kW	50,00	60,00	70,00	80,00	90,00	100,3	110,3
OP	(3)(2)	kW/kW	3,440	3,380	3,150	3,320	3,120	3,350	3,180
FFICIENZA ENERGETICA									
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente			•						
rated,c	(11)	kW	48,0	53,0	60,0	68,3	74,1	85,9	93,8
EER	(11)(12)		4,63	4,58	4,46	4,49	4,46	4,81	4,75
endimento ηs	(11)(13)	%	182	180	175	177	175	189	187
FFICIENZA STAGIONALE IN RISCALDA	AMENTO (Reg. UE 8	13/2013)						
ASSA TEMPERATURA	-		-						
Design	(4)	kW	40,4	47,9	54,7	63,6	71,8	80,4	88,88
COP	(4)(14)		4,39	4,33	4,34	4,35	4,12	4,30	4,32
endimento ηs	(4)(15)	%	172	170	171	171	162	169	170
lasse di efficienza stagionale	(16)		A++	A++	A++	A++	A++	-	-
IEDIA TEMPERATURA									
Design	(5)	kW	40,2	48,4	48,4	63,7	63,7	82,3	82,3
COP	(5)(14)		3,43	3,37	3,37	3,37	3,23	3,39	3,43
Rendimento ηs	(5)(15)	%	134	132	132	132	126	133	134
lasse di efficienza stagionale	(17)		A++	A++	A++	A++	A++	-	-
CAMBIATORI									
CAMBIATORE UTENZA IN REFRIGERA	AZIONE								
ortata	(1)	l/s	2,300	2,540	2,874	3,270	3,547	4,112	4,494
erdita di carico allo scambiatore	(1)	kPa	14,4	17,6	22,5	17,2	20,2	20,8	24,9
CAMBIATORE UTENZA IN RISCALDAN	MENTO								
ortata	(3)	l/s	2,410	2,889	3,373	3,856	4,337	4,832	5,311
erdita di carico allo scambiatore	(3)	kPa	15,8	22,7	31,0	23,9	30,2	28,7	34,7
IRCUITO FRIGORIFERO									
. compressori		N°	1	1	1	2	2	2	2
I. circuiti		N°	1	1	1	1	1	1	1
arica refrigerante teorica		kg	13,5	13,5	12,0	17,5	17,0	21,5	20,5
IVELLI SONORI									
ressione sonora totale	(9)	dB(A)	59	60	62	62	63	63	63
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	77	78	80	80	81	82	82
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	77	78	80	80	81	82	82
IMENSIONI E PESI									
	(10)	mm	2085	2085	2085	2600	2600	3225	3225
	(10)	mm	1100	1100	1100	1100	1100	1100	1100
1	(10)	mm	2400	2400	2400	2400	2400	2400	2400
Peso in funzionamento	(10)	kg	710	710	710	960	960	1085	1085


- 1
- 2
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, outdoors.
 Potenza sonora in riscaldamento, outdoors. 5


- 6 7 8

Dati certificati in EUROVENT

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in riscaldamento, outdoors.

Disegno dimensionale

Pompa di calore reversibile ad alta efficienza con sorgente aria per installazione esterna, alta temperatura acqua

La pompa di calore reversibile AWR-HT rappresenta la migliore soluzione per impianti di climatizzazione dove è richiesta, unitamente alla capacità di raffrescamento degli ambienti, anche un'alta temperatura dell'acqua calda sia per scopo riscaldamento che per uso sanitario. Il compressore con immissione supplementare di vapore nel ciclo di compressione e tecnologia EVI, garantisce il raggiungimento di temperature dell'acqua fino a 65°C e un ampliamento dei limiti di funzionamento fino a temperature esterne di -20°C. La mancanza di sonde geotermiche o collegamenti a pozzi rende l'installazione semplice e adatta ad ogni applicazione.

W3000SF

Controllore con display LCD dedicato ad applicazioni in pompa di calore con logica integrata per la produzione di acqua calda ad alta temperatura. La gestione delle differenti temperature avviene in modo automatico in base alle diverse condizioni in cui si trova ad operare il sistema, con la possibilità di assegnare dedicati livelli di priorità alla produzione dell'acqua ad uso sanitario a seconda delle diverse esigenze applicative. La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità.

Per sistemi a più unità è possibile effettuare la regolazione delle risorse in modo differenziato al fine di dedicare solo una parte della potenza installata per la produzione di acqua sanitaria, assicurando una più efficiente distribuzione dell'energia e garantendo la contemporaneità di alimentazione dell'acqua nei diversi sistemi di distribuzione. L'orologio integrato permette di creare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia e per la gestione dei cicli anti-legionella. Per lo sbrinamento è impiegata una logica proprietaria di tipo auto-adattativo che monitora i molteplici parametri di funzionamento e ambientali al fine di ridurre il numero e la durata degli sbrinamenti. Supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks.

Una dedicata tastiera per installazione a muro consente infine di assicurare il controllo remoto di tutte le funzioni.

Refrigerante

Versioni

CA-E Versione ad altissima efficienza, oltre la Classe A

LN-CA-E Versione ad altissima efficienza, oltre la Classe A,

silenziata

Configurazioni

Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

EFFICIENZA IN 'CLASSE A' PREMIUM

Tutta la gamma raggiunge efficienze di molto superiori ai livelli previsti per la classe energetica A (in riscaldamento). Le unità AWR-HT/CA-E e AWR-HT/LN-CA-E garantiscono elevati livelli di efficienza oltre che a silenziosità, rendono la gamma la migliore soluzione per ambienti residenziali e commerciali.

ESTESO CAMPO DI FUNZIONAMENTO

Produzione di acqua calda ad uso riscaldamento e in priorità per sanitario fino a 65°C. Funzionamento senza interruzione di operatività fino a -20°C.

MASSIMA AFFIDABILITA

Massima affidabilità di esercizio grazie alle due principali caratteristiche:

- due circuiti indipendenti su tutte le taglie;
- sistema di prevenzione della formazione del ghiaccio in batteria che consente di ottenere cicli di sbrinamento più corti ed efficienti.

ENERGIA RINNOVABILE PER IL SETTORE COMMERCIALE

Ideale nelle riqualificazioni di edifici in caso di sostituzione di caldaie centralizzate a metano o a gasolio, con possibilità di mantenere il preesistente sistema di distribuzione del caldo basato su radiatori.

CONFIGURAZIONE MODULARE

Configurazione modulare con estensione della capacità di sistema fino a 400kW per installazioni di media e grande potenza. Possibilità di frazionamento della potenza termica tra i circuiti di sistema e produzione di acqua calda sanitaria.

AWR-HT / CA-E			0122	0152	0202	0262	0302
-		\//p b /l l=					
Alimentazione elettrica		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50
PRESTAZIONI							
REFRIGERAZIONE (GROSS VALUE)	(4)		0.4.40	40.00		70.40	04.70
Potenza frigorifera	(1)	kW	34,10	43,80	60,30	76,40	91,70
Potenza assorbita totale	(1)	kW	11,60	14,70	20,40	25,80	31,30
EER	(1)	kW/kW	2,940	2,980	2,956	2,961	2,930
REFRIGERAZIONE (EN14511 VALUE)	(4)(0)	1114	0.4.00	40.70	22.22	70.00	04.40
Potenza frigorifera	(1)(2)	kW	34,00	43,70	60,20	76,20	91,40
EER	(1)(2)	kW/kW	2,910	2,950	2,930	2,930	2,900
RISCALDAMENTO (GROSS VALUE)	(0)	1110/	00.00	F4 00	00.00	04.00	400.0
Potenza termica totale	(3)	kW	38,00	51,30	68,80	84,90	102,0
Potenza assorbita totale	(3)	kW	10,70	14,40	19,40	23,60	27,70
СОР	(3)	kW/kW	3,551	3,562	3,546	3,597	3,682
RISCALDAMENTO (EN14511 VALUE)	(0)(0)	1.107	00.40	54.40	00.00	05.00	400.0
Potenza termica totale	(3)(2)	kW	38,10	51,40	69,00	85,20	102,3
COP	(3)(2)	kW/kW	3,530	3,540	3,520	3,570	3,650
EFFICIENZA ENERGETICA							
EFFICIENZA STAGIONALE IN RAFFREDI	DAMENTO	(Reg. UE	2016/2281)				
Refrigerazione d'ambiente							
Prated,c	(11)	kW	-	-	-	-	-
SEER	(11)(12)		-	-	-	-	-
Rendimento ηs	(11)(13)	%	-	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA	AMENTO (Reg. UE 8	13/2013)				
BASSA TEMPERATURA							
PDesign	(4)	kW	28,4	33,8	47,5	58,5	70,6
SCOP	(4)(14)		3,24	3,15	3,22	3,26	3,35
Rendimento ηs	(4)(15)	%	127	123	126	127	131
Classe di efficienza stagionale	(16)		A+	A+	A+	A+	-
MEDIA TEMPERATURA							
PDesign	(5)	kW	30,5	36,8	50,7	63,3	74,7
SCOP	(5)(14)		3,00	2,98	3,01	3,05	3,12
Rendimento ηs	(5)(15)	%	117	116	117	119	122
Classe di efficienza stagionale	(17)		A+	A+	A+	A+	-
SCAMBIATORI							
SCAMBIATORE UTENZA IN REFRIGERA							
Portata	(1)	I/s	1,631	2,095	2,884	3,654	4,385
Perdita di carico allo scambiatore	(1)	kPa	8,10	9,21	11,0	14,5	18,2
SCAMBIATORE UTENZA IN RISCALDAM			4.004	0.470	0.004	4.000	4.004
Portata	(3)	I/s	1,834	2,476	3,321	4,098	4,924
Perdita di carico allo scambiatore	(3)	kPa	10,2	12,9	14,6	18,3	22,9
CIRCUITO FRIGORIFERO							_
N. compressori		N°	2	2	2	2	2
N. circuiti		N°	2	2	2	2	2
Carica refrigerante teorica		kg	13,0	22,0	27,6	35,0	42,0
LIVELLI SONORI	(2)	(F. / . ·	0=	0.5			
Pressione sonora totale	(9)	dB(A)	67	69	70	69	69
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	84	86	87	87	87
Potenza sonora totale in riscaldamento	(6)(8)	dB(A)	84	86	87	87	87
DIMENSIONI E PESI	/						
A	(10)	mm	1695	2195	2745	2745	2745
В	(10)	mm	1120 1465	1120 1465	1120 1465	1120	1120
11						1665	1665
H Peso in funzionamento	(10)	mm kg	510	750	870	940	1030

- 1
- 2
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, outdoors.
 Potenza sonora in riscaldamento, outdoors. 5

- 6 7 8

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, outdoors.

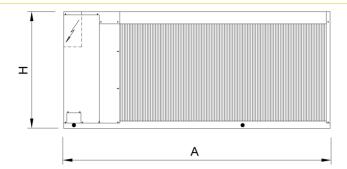
 ACQUA scambiatore freddo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281] (indice di efficienza energetica stagionale del raffreddamento d'ambiente 16 Cefficiente di prestazione stagionale del riscaldamento d'ambiente 16 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 17 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

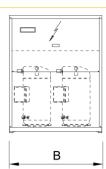
0122 - 0302	34.00-91.70 kW
-------------	----------------

AWR-HT / LN-CA-E			0122	0152	0202	0262	0302
limentazione elettrica		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50
PRESTAZIONI							
REFRIGERAZIONE (GROSS VALUE)							
Potenza frigorifera `	(1)	kW	34,00	44,46	60,20	76,20	90,40
Potenza assorbita totale	(1)	kW	11,60	14,90	20,50	26,10	32,90
EER	(1)	kW/kW	2,931	2,987	2,937	2,920	2,748
REFRIGERAZIONE (EN14511 VALUE)							
Potenza frigorifera	(1)(2)	kW	33,90	44,30	60,10	76,00	90,10
ER	(1)(2)	kW/kW	2,900	2,940	2,910	2,890	2,720
RISCALDAMENTO (GROSS VALUE)							
Potenza termica totale	(3)	kW	38,40	50,43	69,40	85,80	100,3
Potenza assorbita totale	(3)	kW	10,70	14,30	19,40	23,70	27,60
COP	(3)	kW/kW	3,589	3,524	3,577	3,620	3,634
RISCALDAMENTO (EN14511 VALUE)							
Potenza termica totale	(3)(2)	kW	38,50	50,60	69,60	86,10	100,6
COP	(3)(2)	kW/kW	3,560	3,490	3,550	3,590	3,600
FFICIENZA ENERGETICA							
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)				
Refrigerazione d'ambiente		, ., ., ., .,					
Prated.c	(11)	kW	_	_	_	_	_
SEER	(11)(12)	11.4.4	-	-	-	-	-
Rendimento ηs	(11)(13)	%	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA	. ,, ,	Rea. UF 8	13/2013)				
BASSA TEMPERATURA	(,				
PDesign	(4)	kW	28.7	34.5	47.8	59.3	70.3
SCOP	(4)(14)	17.4.4	3.27	3.17	3.25	3.29	3.35
Rendimento ns	(4)(15)	%	128	124	127	128	131
Classe di efficienza stagionale	(16)		A+	A+	A+	A+	-
MEDIA TEMPERATURA							
PDesign	(5)	kW	30.7	37.0	50.9	63.3	75.2
SCOP	(5)(14)		3.01	3.00	3.03	3.05	3.11
Rendimento ns	(5)(15)	%	118	117	118	119	121
Classe di efficienza stagionale	(17)		A+	A+	A+	A+	-
SCAMBIATORI							
CAMBIATORE UTENZA IN REFRIGERA	ZIONE						
Portata	(1)	l/s	1.626	2.126	2.879	3.644	4.323
Perdita di carico allo scambiatore	(1)	kPa	8.05	17,7	11,0	14,5	17,7
CAMBIATORE UTENZA IN RISCALDAN		in u	0,00	,.	11,0	11,0	11,1
Portata	(3)	l/s	1,854	2.434	3,350	4,142	4.842
Perdita di carico allo scambiatore	(3)	kPa	10,5	23,2	14,8	18,7	22,2
CIRCUITO FRIGORIFERO	(0)	in a	10,0	20,2	1 7,0	10,1	,-
I. compressori		N°	2	2	2	2	2
V. circuiti		N°	2	2	2	2	2
Carica refrigerante teorica		kg	16,0	25,3	35.3	44.1	52,0
IVELLI SONORI		ng	10,0	20,0	55,5	1 7, 1	02,0
Pressione sonora totale	(9)	dB(A)	48	50	51	51	52
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	80	82	83	83	84
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	82	84	85	85	86
DIMENSIONI E PESI	(3)(3)	αD(Λ)	02	J-			
\	(10)	mm	1695	2195	2745	2745	2745
3	(10)	mm	1120	1120	1120	1120	1120
1	(10)	mm	1465	1465	1465	1665	1665
Peso in funzionamento	(10)	kg	550	780	940	1010	1060

- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, outdoors.
 Potenza sonora in riscaldamento, outdoors.

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in riferigerazione, outdoors.


 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionale.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281] (Indice di efficienza energetica stagionale ed raffreddamento d'ambiente d'Coefficiente di prestazione stagionale
 15 Efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, outdoors.


Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R407C [GWP₁∞ 1774] ad effetto serra

Disegno dimensionale

Pompa di calore reversibile ad alta efficienza con sorgente aria per installazione esterna, alta temperatura acqua

La pompa di calore reversibile AWR-HT rappresenta la migliore soluzione per impianti di climatizzazione dove è richiesta, unitamente alla capacità di raffrescamento degli ambienti, anche un'alta temperatura dell'acqua calda sia per scopo riscaldamento che per uso sanitario. Il compressore con immissione supplementare di vapore nel ciclo di compressione e tecnologia EVI, garantisce il raggiungimento di temperature dell'acqua fino a 65°C e un ampliamento dei limiti di funzionamento fino a temperature esterne di -20°C. La mancanza di sonde geotermiche o collegamenti a pozzi rende l'installazione semplice e adatta ad ogni applicazione.

W3000SF

Controllore con display LCD dedicato ad applicazioni in pompa di calore con logica integrata per la produzione di acqua calda ad alta temperatura. La gestione delle differenti temperature avviene in modo automatico in base alle diverse condizioni in cui si trova ad operare il sistema, con la possibilità di assegnare dedicati livelli di priorità alla produzione dell'acqua ad uso sanitario a seconda delle diverse esigenze applicative. La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità.

Per sistemi a più unità è possibile effettuare la regolazione delle risorse in modo differenziato al fine di dedicare solo una parte della potenza installata per la produzione di acqua sanitaria, assicurando una più efficiente distribuzione dell'energia e garantendo la contemporaneità di alimentazione dell'acqua nei diversi sistemi di distribuzione. L'orologio integrato permette di creare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia e per la gestione dei cicli anti-legionella. Per lo sbrinamento è impiegata una logica proprietaria di tipo auto-adattativo che monitora i molteplici parametri di funzionamento e ambientali al fine di ridurre il numero e la durata degli sbrinamenti. Supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks.

Una dedicata tastiera per installazione a muro consente infine di assicurare il controllo remoto di tutte le funzioni.

Refrigerante

Versioni

CA-E Versione ad altissima efficienza, oltre la Classe A LN-CA-E Versione ad altissima efficienza, oltre la Classe A, silenziata

Configurazioni

- Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

EFFICIENZA IN 'CLASSE A' PREMIUM

Tutta la gamma raggiunge efficienze di molto superiori ai livelli previsti per la classe energetica A (in riscaldamento). Le unità AWR-HT/CA-E e AWR-HT/LN-CA-E garantiscono elevati livelli di efficienza oltre che a silenziosità, rendono la gamma la migliore soluzione per ambienti residenziali e commerciali.

ESTESO CAMPO DI FUNZIONAMENTO

Produzione di acqua calda ad uso riscaldamento e in priorità per sanitario fino a 65°C. Funzionamento senza interruzione di operatività fino a -20°C.

MASSIMA AFFIDABILITA

Massima affidabilità di esercizio grazie alle due principali caratteristiche:

- due circuiti indipendenti su tutte le taglie;
- sistema di prevenzione della formazione del ghiaccio in batteria che consente di ottenere cicli di sbrinamento più corti ed efficienti.

ENERGIA RINNOVABILE PER IL SETTORE COMMERCIALE

Ideale nelle riqualificazioni di edifici in caso di sostituzione di caldaie centralizzate a metano o a gasolio, con possibilità di mantenere il preesistente sistema di distribuzione del caldo basato su radiatori.

CONFIGURAZIONE MODULARE

Configurazione modulare con estensione della capacità di sistema fino a 1000 kW per installazioni di media e grande potenza. Possibilità di frazionamento della potenza termica tra i circuiti di sistema e produzione di acqua calda sanitaria

AWR-HT / CA-E			0404	0524	0604
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50
PRESTAZIONI					
REFRIGERAZIONE (GROSS VALUE)					
Potenza frigorifera	(1)	kW	119,7	146,5	181,2
Potenza assorbita totale	(1)	kW	43,80	53,30	65,80
EER	(1)	kW/kW	2,733	2,749	2,754
REFRIGERAZIONE (EN14511 VALUE)					
Potenza frigorifera	(1)(2)	kW	119,4	146,1	180,7
EER	(1)(2)	kW/kW	2,700	2,720	2,720
RISCALDAMENTO (GROSS VALUE)					
Potenza termica totale	(3)	kW	134,9	171,0	204,8
Potenza assorbita totale	(3)	kW	39,60	48,10	58,90
COP	(3)	kW/kW	3,407	3,555	3,477
RISCALDAMENTO (EN14511 VALUE)					
Potenza termica totale	(3)(2)	kW	135,4	171,6	205,5
COP	(3)(2)	kW/kW	3,380	3,520	3,450
EFFICIENZA ENERGETICA					
EFFICIENZA STAGIONALE IN RAFFREDI	DAMENTO	(Reg. UE	2016/2281)		
Refrigerazione d'ambiente					
Prated,c	(11)	kW	-	_	-
SEER	(11)(12)		-	-	-
Rendimento ηs	(11)(13)	%	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA	MENTO (Reg. UE 81	3/2013)		
BASSA TEMPERATURA	-		•		
PDesign	(4)	kW	92,6	117	139
SCOP	(4)(14)		3,23	3,40	3,29
Rendimento ηs	(4)(15)	%	126	133	129
Classe di efficienza stagionale	(16)		-	-	-
MEDIA TEMPERATURA					
PDesign	(5)	kW	98,9	126	148
SCOP	(5)(14)		3,02	3,19	3,08
Rendimento ηs	(5)(15)	%	118	125	120
Classe di efficienza stagionale	(17)		-	-	-
SCAMBIATORI					
SCAMBIATORE UTENZA IN REFRIGERAZ	ZIONE				
Portata	(1)	l/s	5,724	7,006	8,665
Perdita di carico allo scambiatore	(1)	kPa	19,6	20,6	24,0
SCAMBIATORE UTENZA IN RISCALDAM	ENTO				
Portata	(3)	l/s	6,512	8,254	9,886
Perdita di carico allo scambiatore	(3)	kPa	25,4	28,6	31,3
CIRCUITO FRIGORIFERO					
N. compressori		N°	4	4	4
N. circuiti		N°	2	2	2
Carica refrigerante teorica		kg	66,0	108	108
LIVELLI SONORI					
Pressione sonora totale	(9)	dB(A)	73	73	74
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	92	93	94
Potenza sonora totale in riscaldamento	(6)(8)	dB(A)	92	93	94
DIMENSIONI E PESI					
A	(10)	mm	3110	4110	4110
В	(10)	mm	2220	2220	2220
	(10)		0450	0450	0450
H Peso in funzionamento	(10)	mm	2150 1950	2150 2400	2150 2530

- 1
- 2
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, outdoors.
 Potenza sonora in riscaldamento, outdoors.
- 5

- 6 7 8

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, outdoors.

 ACQUA scambiatore freddo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281] (indice di efficienza energetica stagionale del raffreddamento d'ambiente 16 Cefficiente di prestazione stagionale del riscaldamento d'ambiente 16 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 17 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

AWR-HT / LN-CA-E			0404	0524	0604	
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	
PRESTAZIONI		V/PII/112	100/0/00	100/0/00	100/0/00	
REFRIGERAZIONE (GROSS VALUE)						
	(1)	kW	116.3	1117	175,8	
Potenza frigorifera	(1)	kW		144,7		
Potenza assorbita totale			42,00	52,20	63,20	
EER	(1)	kW/kW	2,769	2,772	2,782	
REFRIGERAZIONE (EN14511 VALUE)	(4)(2)					
Potenza frigorifera	(1)(2)	kW	116,0	144,3	175,3	
EER	(1)(2)	kW/kW	2,740	2,740	2,750	
RISCALDAMENTO (GROSS VALUE)						
Potenza termica totale	(3)	kW	134,9	171,0	204,8	
Potenza assorbita totale	(3)	kW	39,60	48,10	58,90	
COP	(3)	kW/kW	3,407	3,555	3,477	
RISCALDAMENTO (EN14511 VALUE)						
Potenza termica totale	(3)(2)	kW	135.4	171,6	205.5	
COP	(3)(2)	kW/kW	3.380	3,520	3,450	
EFFICIENZA ENERGETICA	. , , ,			.,.	-,	
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Peg IIE	2016/2281)			
	PANIENIO	(INEG. UE	2010/2201)			
Refrigerazione d'ambiente	(44)	1.107				
Prated,c	(11)	kW	-	-	-	
SEER Dandimente no	(11)(12)	0/	-	-	-	
Rendimento ηs	(11)(13)	%	-	-	-	
EFFICIENZA STAGIONALE IN RISCALDA	AMENTO (Reg. UE 81	13/2013)			
BASSA TEMPERATURA						
PDesign	(4)	kW	92,6	117	139	
SCOP	(4)(14)		3,23	3,40	3,29	
Rendimento ηs	(4)(15)	%	126	133	129	
Classe di efficienza stagionale	(16)		-	-	-	
MEDIA TEMPERATURA						
PDesign	(5)	kW	98.9	126	148	
SCOP	(5)(14)		3.02	3.19	3.08	
Rendimento ns	(5)(15)	%	118	125	120	
Classe di efficienza stagionale	(17)	,,,	-	-	-	
SCAMBIATORI	()					
SCAMBIATORE UTENZA IN REFRIGERA	AZIONE					
Portata		1/0	E 560	6 000	8.407	
	(1)	l/s	5,562	6,920	-,	
Perdita di carico allo scambiatore	(1)	kPa	18,5	20,1	22,6	
SCAMBIATORE UTENZA IN RISCALDAN						
Portata	(3)	l/s	6,512	8,254	9,886	
Perdita di carico allo scambiatore	(3)	kPa	25,4	28,6	31,3	
CIRCUITO FRIGORIFERO						
N. compressori		N°	4	4	4	
N. circuiti		N°	2	2	2	
Carica refrigerante teorica		kg	70,0	110	110	
LIVELLI SONORI			,-			
Pressione sonora totale	(9)	dB(A)	67	66	67	
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	86	86	87	
	(0)(0)	UD(A)	00	00	03	
	(10)	pa na	2110	4110	4110	
<u> </u>						
Peso in tunzionamento	(10)	kg	1960	2410	2540	
Potenza sonora totale in riscaldamento DIMENSIONI E PESI A B H Peso in funzionamento	(6)(8) (10) (10) (10) (10)	dB(A) mm mm mm kg	88 3110 2220 2150 1960	88 4110 2220 2150 2410	89 4110 2220 2150 2540	

- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, outdoors.
 Potenza sonora in riscaldamento, outdoors.

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.

 Valori riferiti alla normativa EN14511

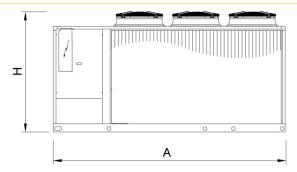
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

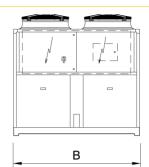
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]


 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 - climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]


 17 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Disegno dimensionale

NX-N-G06

0202P - 0812P 44.91-210.7 kW

Unità da esterno in pompa di calore per la produzione di acqua refrigerata/riscaldata con compressori ermetici rotativi di tipo scroll dedicati per l'utilizzo di R454B, ventilatori assiali, batteria di condensazione con tubi in rame ed alette in alluminio, scambiatore a piastre saldo brasate e valvola di espansione termostatica meccanica o elettronica, a seconda della versione. La gamma è composta da unità equipaggiate con due compressori in configurazione mono-circuito.

Comando

Controllore elettronico W3000+

Il controllore W3000+ si caratterizza per le evolute funzioni e regolazioni proprietarie.

La tastiera Compact dispone di comandi funzionali e un display LCD per la gestione dell'unità mediante menu multi-lingua (19 lingue disponibili). La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità. È inoltre possibile programmare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie. Come opzione, è disponibile l'innovativa interfaccia utente KIPlink (Keyboard In your Pocket) che permette di operare sull'unità direttamente da smartphone e tablet.

La termoregolazione si basa sull'esclusivo algoritmo Quick-Mind, dotato di logiche auto-adattative, utili nei sistemi con ridotto contenuto d'acqua. In alternativa sono impostabili regolazioni proporzionale o proporzionale-integrale.

Per sistemi a più unità è possibile la regolazione delle risorse tramite dispositivi proprietari opzionali. Inoltre, può essere attuata la contabilizzazione dei consumi/prestazioni.

La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Bacnet MS/TP RS485, LonWorks, Konnex. Compatibilità con tastiera remota (gestione fino a 8 unità). Per lo sbrinamento (solo unità reversibili) è impiegata una logica proprietaria di tipo auto-adattativo per il monitoraggio di molteplici parametri di funzionamento e ambientali. Ciò permette di ridurre il numero e la durata degli sbrinamenti a vantaggio dell'efficienza energetica complessiva.

Refrigerante

Versioni

K Efficienza standard in versione compatta

LN-K Low Noise, efficienza standard in versione compatta

CA Classe A di efficienza LN-CA Low Noise, Classe A di

efficienza

Configurazioni

- Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

REFRIGERANTE A BASSO GWP

Refrigerante di nuova generazione R454B che assicura una riduzione del GWP pari al 76% (GWP R454B = 467, GWP R410A = 1924 secondo IPCC 5a revisione), e un impatto sullo strato di ozono nullo.

ESTESO CAMPO DI FUNZIONAMENTO

Il funzionamento a pieno carico è garantito fino a -15°C di temperatura aria esterna in modalità pompa di calore, e fino a 46°C in modalità chiller senza necessità di accessori aggiuntivi. A -15°C, l'unità è in grado di produrre acqua calda a pieno carico fino a 42°C.

VALVOLA DI ESPANSIONE ELETTRONICA

L'utilizzo della valvola di espansione elettronica apporta notevoli benefici specie in presenza di variabilità di carico e nelle diverse condizioni esterne. La sua introduzione su questa unità è conseguente alle accurate scelte progettuali inerenti alla circuitazione frigorifera e l'ottimizzazione del funzionamento in molteplici condizioni operative. La valvola di espansione elettronica è standard in tutte le versioni CA.

EFFICIENZA IN CLASSE A

Tutta la gamma è disponibile in classe energetica A (in riscaldamento). La versione CA garantisce alti livelli di efficienza grazie al generoso dimensionamento delle superfici di scambio ed ad una accurata gestione delle batterie di ventilazione.

DUE LIVELLI DI SILENZIOSITA'

Due distinti livelli di silenziosità disponibili. In questo modo è possibile identificare chiaramente l'unità a seconda dei requisiti richiesti in base alla destinazione impiantistica ed all'utilizzo finale.

GRUPPO IDRONICO INTEGRATO

Disponibili kit idronici dotati di 1 o 2 pompe ad alta o bassa prevalenza.

Accessori

- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet
- Tastiera di controllo remota (distanza fino a 200m o fino a 500m)
- Batterie tradizionali disponibili con alette pre-verniciate o con trattamento protettivo Fin Guard Silver.
- Dispositivo per la rilevazione fughe di refrigerante
- Funzione Notturna (night mode) per limitare il livello sonoro dell'unità.
- Funzione User Limit Control (U.L.C) per garantire l'avviamento sicuro dell'unità in condizioni critiche di temperatura acqua o aria.
- Interfaccia utente KIPlink
- Kit idronico con 1 o 2 pompe.
 Disponibile accumulo inerziale.
- Soft start
 - Ventilatori EC "brushless"

NX-N-G06/K			0202P	0252P	0262P	0302P	0352P	0402P
limentazione elettrica		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3/50
RESTAZIONI								
EFRIGERAZIONE (GROSS VALUE)								
otenza frigorifera	(1)	kW	48,97	56,01	62,04	71,14	81,03	96,16
otenza assorbita totale	(1)	kW	17,11	19,14	21,65	26,20	29,87	33,28
ER	(1)	kW/kW	2,865	2,932	2,857	2,714	2,709	2,889
EFRIGERAZIONE (EN14511 VALUE)								
otenza frigorifera	(1)(2)	kW	48,90	55,90	61,90	71,00	80,80	95,90
ER	(1)(2)	kW/kW	2,820	2,890	2,830	2,690	2,670	2,840
lasse EUROVENT			-	-	-	-	-	-
ISCALDAMENTO (GROSS VALUE)								
otenza termica totale	(3)	kW	53,13	62,42	67,86	76,87	90,53	103,9
otenza assorbita totale	(3)	kW	16.78	19.83	21.20	24.15	27.48	33.16
OP	(3)	kW/kW	3,161	3,152	3,203	3,178	3,291	3,130
ISCALDAMENTO (EN14511 VALUE)	. ,		-, -	-, -	-,	-, -	-, -	-,
otenza termica totale	(3)(2)	kW	53,30	62,60	68,00	77,00	90,90	104,3
OP	(3)(2)	kW/kW	3.120	3,120	3.170	3,150	3,230	3,080
lasse EUROVENT	. , , ,		-,	-,	-,	-,	-,	2,200
FFICIENZA ENERGETICA								
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Rea UF	2016/2281)					
efrigerazione d'ambiente	D, MILLIAT O	(ittog. oz	2010/2201/					
rated,c	(10)	kW	_	_	_	_	_	_
EER	(10)(11)	IXVV						
endimento ns	(10)(12)	%		_		_		
FFICIENZA STAGIONALE IN RISCALDA	. ,, ,		13/2013)					
Design	(4)	kW	40.2	45.8	49.5	56.6	70.6	76.6
COP	(4)(13)	1000	3.82	3.63	3.68	3.67	3.79	3,38
endimento ns	(4)(14)	%	150	142	144	144	149	132
lasse di efficienza stagionale	(15)	70	A++	A+	A+	A+	-	-
CAMBIATORI	(10)		**					
CAMBIATORE UTENZA IN REFRIGERA	ZIONE							
ortata	(1)	l/s	2.342	2.678	2.967	3,402	3,875	4,599
erdita di carico allo scambiatore	(1)	kPa	32.3	30.2	30.2	28.5	45.3	44.4
CAMBIATORE UTENZA IN RISCALDAM	. ,	KI a	02,0	30,2	30,2	20,0	40,0	77,7
ortata	(3)	l/s	2.564	3.013	3.276	3.711	4.370	5.017
erdita di carico allo scambiatore	(3)	kPa	38,7	38,2	36,8	33,9	57,7	52,9
IRCUITO FRIGORIFERO	(0)	KI A	30,1	JU,Z	30,0	00,0	51,1	52,3
. compressori		N°	2	2	2	2	2	2
. circuiti		N°	1	1	1	1	1	1
arica refrigerante teorica		kg	14.0	15.4	15.5	16.3	23.4	27.5
VELLI SONORI		кy	17,0	10,4	10,0	10,0	20,4	۷, اک
ressione sonora totale	(5)	dB(A)	67	67	67	67	68	70
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	84	85	85	85	86	88
otenza sonora totale in reingerazione otenza sonora totale in riscaldamento	(6)(8)	dB(A)	85	86	86	86	86	88
MENSIONI E PESI	(0)(0)	UD(A)	00	00	00	00	00	00
	(9)	le=	600	670	680	690	740	840
eso in funzionamento	(9)	kg	1825	2395	2395	2395	2395	2825
	(9)	mm mm	1825	2395 1195	2395 1195	2395 1195	1195	1195
	(5)	1111111	1195	1195	1195	1190	1190	1195

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511 1
- 2 Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013] AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

0202P - 0812P 44,91-210,7 kW

NX-N-G06/K			0452P	0502P	0552P	0602P	0702P	0802P
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	108,0	120,0	132,7	155,4	172,5	190,8
Potenza assorbita totale	(1)	kW	37,90	42,07	48,61	54,32	63,01	72,29
ER	(1)	kW/kW	2,850	2,850	2,730	2,862	2,738	2,639
REFRIGERAZIONE (EN14511 VALUE)				,	,	,	,	
Potenza frigorifera	(1)(2)	kW	107,7	119.7	132,4	155,1	172,2	190,5
ER	(1)(2)	kW/kW	2,800	2,810	2,690	2,820	2,700	2,600
lasse EUROVENT	(/ (/		_,,,,,	_,	-,	_,o_o	_,	_,===
ISCALDAMENTO (GROSS VALUE)								
otenza termica totale	(3)	kW	114.7	128.6	144.1	167.6	185.5	202.9
otenza assorbita totale	(3)	kW	36.59	40.00	45.21	53,18	58.90	64.72
OP	(3)	kW/kW	3,134	3,215	3,188	3,150	3,149	3,136
ISCALDAMENTO (EN14511 VALUE)	(-)		0,.0.	0,2.0	0,.00	0,100	0,1.0	0,.00
otenza termica totale	(3)(2)	kW	115,1	128.9	144,4	167,9	185,8	203,3
COP	(3)(2)	kW/kW	3.090	3,170	3.140	3,110	3,110	3,090
lasse EUROVENT	(0)(2)	10071000	0,000	0,170	0,140	0,110	0,110	0,000
FFICIENZA ENERGETICA								
	DAMENTO	/Dem III	2046/2204)					
FFICIENZA STAGIONALE IN RAFFRED	DAMENIO	(Reg. UE	2016/2261)					
efrigerazione d'ambiente	(40)	130/						
rated,c	(10)	kW	-	-	-	-	-	-
EER	(10)(11)	0/	-	-	-	-	-	-
endimento ηs	(10)(12)	%	-	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA					4.40	407	450	475
Design	(4)	kW	88,5	98,8	113	127	150	175
COP	(4)(13)	0/	3,38	3,45	3,56	3,40	3,44	3,42
tendimento ηs	(4)(14)	%	132	135	139	133	135	134
classe di efficienza stagionale	(15)		-	-	-	-	-	-
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA								
ortata	(1)	l/s	5,166	5,738	6,347	7,430	8,250	9,126
erdita di carico allo scambiatore	(1)	kPa	45,7	43,5	44,1	43,4	41,3	50,5
CAMBIATORE UTENZA IN RISCALDAN								
ortata	(3)	l/s	5,537	6,207	6,954	8,089	8,955	9,796
erdita di carico allo scambiatore	(3)	kPa	52,4	50,9	53,0	51,4	48,6	58,2
IRCUITO FRIGORIFERO								
. compressori		N°	2	2	2	2	2	2
. circuiti		N°	1	1	1	1	1	1
arica refrigerante teorica		kg	31,6	42,1	42,5	44,0	45,4	47,5
IVELLI SONORI								
ressione sonora totale	(5)	dB(A)	70	70	72	71	71	72
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	88	88	90	90	90	91
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	88	88	90	90	90	91
IMENSIONI E PESI		` '						
eso in funzionamento	(9)	kg	940	1110	1160	1260	1280	1320
	(9)	mm	2825	3360	3360	3980	3980	3980
3	(9)	mm	1195	1195	1195	1195	1195	1195
1	(9)	mm	1980	1980	1980	1980	1980	1980

Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511
 Acqua scambiatore caido lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

NX-N-G06/LN-K			0202P	0252P	0262P	0302P	0352P	0402P
limentazione elettrica		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3/50
RESTAZIONI								
EFRIGERAZIONE (GROSS VALUE)								
otenza frigorifera	(1)	kW	44,91	51,31	57,96	67,09	74,79	90,71
otenza assorbita totale	(1)	kW	18,44	20,84	23,93	27,74	32,41	34,13
ER	(1)	kW/kW	2,440	2,466	2,427	2,422	2,309	2,660
EFRIGERAZIONE (EN14511 VALUE)			,	,	,	,	,	,
otenza frigorifera	(1)(2)	kW	44.80	51.20	57,90	67.00	74.60	90,50
ER	(1)(2)	kW/kW	2,410	2,440	2,400	2,400	2,280	2,620
lasse EUROVENT	,,,,		-	-	-	-	-	-
ISCALDAMENTO (GROSS VALUE)								
otenza termica totale	(3)	kW	53.13	62.42	67.86	76.87	90.53	103.9
otenza assorbita totale	(3)	kW	16.78	19.83	21.20	24.15	27.48	33.16
OP	(3)	kW/kW	3,161	3,152	3,203	3,178	3,291	3,130
ISCALDAMENTO (EN14511 VALUE)	. ,		-,	-,	-,	-,	-,	-,
otenza termica totale	(3)(2)	kW	53,30	62,60	68,00	77,00	90,90	104,3
OP	(3)(2)	kW/kW	3.120	3,120	3.170	3,150	3,230	3,080
lasse EUROVENT	(3)(-)	144/144	0,120	0,120	0,110	0,700	0,200	3,000
FFICIENZA ENERGETICA								
FFICIENZA ENERGETICA FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Pec III	2016/2294\					
	DAMENTO	(Reg. UE	2010/2201)					
efrigerazione d'ambiente	(10)	LAAA	_	_				
rated,c EER	(10)(11)	kW				<u> </u>	-	
	(10)(11)	%		-			-	-
endimento ηs	. ,, ,			-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA				45.0	40.5	50.0	70.0	70.0
Design	(4)	kW	40,2	45,8	49,5	56,6	70,6	76,6
COP	(4)(13)	0/	3,82	3,63	3,68	3,67	3,79	3,51
endimento ηs	(4)(14)	%	150 A++	142 A+	144 A+	144	149	137
lasse di efficienza stagionale	(15)		A++	A+	A+	A+	-	-
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA								
ortata	(1)	l/s	2,147	2,453	2,772	3,208	3,576	4,338
erdita di carico allo scambiatore	(1)	kPa	27,1	25,4	26,4	25,3	38,6	39,5
CAMBIATORE UTENZA IN RISCALDAN								
ortata	(3)	l/s	2,564	3,013	3,276	3,711	4,370	5,017
erdita di carico allo scambiatore	(3)	kPa	38,7	38,2	36,8	33,9	57,7	52,9
IRCUITO FRIGORIFERO								
. compressori		N°	2	2	2	2	2	2
. circuiti		N°	1	1	1	1	1	1
arica refrigerante teorica		kg	14,0	15,4	15,5	16,3	23,4	27,5
IVELLI SONORI								
ressione sonora totale	(5)	dB(A)	60	60	61	62	64	65
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	77	78	79	80	82	83
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	79	80	81	82	83	84
MENSIONI E PESI								
eso in funzionamento	(9)	kg	610	680	690	700	750	880
	(9)	mm	1825	2395	2395	2395	2395	2825
	(9)	mm	1195	1195	1195	1195	1195	1195
	(9)	mm	1865	1865	1865	1865	1865	1980

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511 1
- 2 Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

0202P - 0812P 44,91-210,7 kW

NX-N-G06/LN-K			0452P	0502P	0552P	0602P	0702P	0802P
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	99,46	109,4	126,4	148,1	161,5	172,4
Potenza assorbita totale	(1)	kW	39,44	44,36	50,24	56,21	66,50	77,76
ER	(1)	kW/kW	2,525	2,464	2,518	2,635	2,429	2,216
REFRIGERAZIONE (EN14511 VALUE)				,	,	,	,	
Potenza frigorifera	(1)(2)	kW	99,20	109.1	126.0	147,8	161,2	172,0
ER	(1)(2)	kW/kW	2,490	2,440	2,480	2,600	2,400	2,190
Classe EUROVENT	(), ()		-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)								
otenza termica totale	(3)	kW	114.7	128.6	144.1	167.6	185.5	202.9
otenza assorbita totale	(3)	kW	36.59	40.00	45.21	53,18	58.90	64.72
OP	(3)	kW/kW	3,134	3,215	3,188	3,150	3,149	3,136
ISCALDAMENTO (EN14511 VALUE)	. ,		-,	-,	-,	-,	-,	2,.50
otenza termica totale	(3)(2)	kW	115,1	128.9	144,4	167,9	185,8	203,3
OP	(3)(2)	kW/kW	3.090	3,170	3.140	3.110	3,110	3,090
lasse EUROVENT	(-/(-/		0,000	0,110	0,.10	0,.10	0,710	3,000
FFICIENZA ENERGETICA								
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Peg IIE	2016/2281)					
efrigerazione d'ambiente	DAMENTO	(Reg. UL	2010/2201)					
rated,c	(10)	kW	_	_		_		
EER	(10)(11)	KVV						
endimento ns	(10)(11)	%						
FFICIENZA STAGIONALE IN RISCALD					-			
Design	AMENIO (I	kW kW	88.5	98.8	113	127	150	175
COP	(4)(13)	KVV	3.61	3.68	3.74	3.61	3.69	3.60
endimento ns	(4)(13)	%	141	3,00	3,74 146	141	3,69 145	141
lasse di efficienza stagionale	(15)	70	- 141	-	- 140	- 141	- 145	- 141
<u>~</u>	(13)		-	-	-	-	-	
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA		.,	4.750	= 000	0.040	7.004	7.705	0.040
ortata	(1)	l/s	4,756	5,230	6,043	7,084	7,725	8,242
erdita di carico allo scambiatore	(1)	kPa	38,7	36,2	40,0	39,4	36,2	41,2
CAMBIATORE UTENZA IN RISCALDAN		.,	F F07	0.007	0.054	0.000	0.055	0.700
ortata	(3)	l/s	5,537	6,207	6,954	8,089	8,955	9,796
erdita di carico allo scambiatore	(3)	kPa	52,4	50,9	53,0	51,4	48,6	58,2
IRCUITO FRIGORIFERO								
. compressori		N°	2	2	2	2	2	2
. circuiti		N°	1	1	1	1	1	1
arica refrigerante teorica		kg	31,6	42,1	42,5	44,0	45,4	47,5
IVELLI SONORI	7-1							
ressione sonora totale	(5)	dB(A)	65	65	66	65	65	67
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	83	83	84	84	84	86
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	84	84	85	85	85	87
IMENSIONI E PESI								
eso in funzionamento	(9)	kg	1020	1160	1200	1290	1330	1370
\	(9)	mm	2825	3360	3360	3980	3980	3980
3	(9)	mm	1195	1195	1195	1195	1195	1195
H	(9)	mm	1980	1980	1980	1980	1980	1980

Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511
 Acqua scambiatore caido lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

NX-N-G06/CA			0202P	0252P	0262P	0302P	0352P	0402P
Alimentazione elettrica		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	49,19	57.23	64.17	77,67	88.29	98.07
Potenza assorbita totale	(1)	kW	16.76	18.54	20,90	25.29	28.80	32.07
ER	(1)	kW/kW	2,929	3,092	3,072	3,071	3,066	3,056
REFRIGERAZIONE (EN14511 VALUE)			,	,			,	
Potenza frigorifera	(1)(2)	kW	49.10	57.10	64.00	77.50	88.00	97.80
ER	(1)(2)	kW/kW	2.890	3.040	3,030	3.030	3,000	3,000
Classe EUROVENT	(/(/		-,	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)								
Potenza termica totale	(3)	kW	56.66	66.73	71.55	83.30	96.89	106.0
Potenza assorbita totale	(3)	kW	16,84	19,88	21,32	24,83	28,16	31,50
COP	(3)	kW/kW	3.375	3.352	3.362	3.359	3.436	3.365
RISCALDAMENTO (EN14511 VALUE)	(-)	,	0,0.0	0,002	0,002	0,000	5,.55	5,550
Potenza termica totale	(3)(2)	kW	56,80	66,90	71,70	83,50	97,20	106,3
COP	(3)(2)	kW/kW	3,330	3,310	3,320	3,320	3,360	3,310
Classe EUROVENT	(0)(-)	ICA ALICA A	0,000	0,010	0,020	0,020	0,000	0,010
FFICIENZA ENERGETICA								
FFICIENZA ENERGETICA FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Dog UE	2046/2204)					
	DAMENTO	(Reg. UE	2016/2201)					
Refrigerazione d'ambiente	(40)	114/						
rated,c	(10)	kW	-	-	-	-	-	-
EER	(10)(11)	0/	-	-	-	-	-	-
Rendimento ηs	(10)(12)	%	-	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA				10.1	50.4	-0 -	74.0	0
Design	(4)	kW	41,9	49,1	53,1	70,7	71,3	77,3
COP	(4)(13)	0/	4,01	3,85	3,84	3,63	3,63	3,62
Rendimento ηs	(4)(14)	%	157	151	151	142	142	142
Classe di efficienza stagionale	(15)		A++	A++	A++	-	-	-
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA								
ortata	(1)	l/s	2,352	2,737	3,069	3,714	4,222	4,690
Perdita di carico allo scambiatore	(1)	kPa	32,6	31,5	32,3	34,0	53,8	46,2
SCAMBIATORE UTENZA IN RISCALDAN								
Portata	(3)	l/s	2,735	3,221	3,454	4,021	4,677	5,115
erdita di carico allo scambiatore	(3)	kPa	44,0	43,7	41,0	39,8	66,0	54,9
IRCUITO FRIGORIFERO								
I. compressori		N°	2	2	2	2	2	2
I. circuiti		N°	1	1	1	1	1	1
Carica refrigerante teorica		kg	13,5	14,9	15,2	18,0	24,8	28,2
IVELLI SÖNORI								
ressione sonora totale	(5)	dB(A)	66	67	67	70	70	71
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	84	85	85	88	88	89
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	85	86	86	89	88	89
IMENSIONI E PESI		. ,						
Peso in funzionamento	(9)	kg	670	700	700	830	940	990
\	(9)	mm	2395	2395	2395	2825	3360	3360
3	(9)	mm	1195	1195	1195	1195	1195	1195
- -	(9)	mm	1865	1865	1865	1980	1980	1980

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511 1
- 2 Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche 4

AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

0202P - 0812P 44,91-210,7 kW

NX-N-G06/CA			0452P	0502P	0562P	0612P	0712P	0812P
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	111,6	125,7	146,4	162,9	189,8	210,7
Potenza assorbita totale	(1)	kW	36,45	40,71	48,05	52,84	62,38	67,71
ER	(1)	kW/kW	3,058	3,088	3,044	3,085	3,042	3,112
REFRIGERAZIONE (EN14511 VALUE)				,	,	,	,	
Potenza frigorifera	(1)(2)	kW	111,2	125,3	146.1	162,6	189,4	210,3
ER	(1)(2)	kW/kW	3,000	3,030	2,990	3,030	2,990	3,060
Classe EUROVENT	(/ (/		-	-	-,	-	-,	-
RISCALDAMENTO (GROSS VALUE)								
Potenza termica totale	(3)	kW	117.3	132.6	154.9	173.4	200.9	222.9
otenza assorbita totale	(3)	kW	34.96	39.46	46.27	51.75	60.06	66.34
COP	(3)	kW/kW	3,351	3,357	3,346	3,354	3,343	3,362
RISCALDAMENTO (EN14511 VALUE)	V-7		0,00.	0,00.	0,0.0	0,00.	0,0.0	0,002
otenza termica totale	(3)(2)	kW	117,6	133,0	155,3	173.7	201,2	223,4
COP	(3)(2)	kW/kW	3,290	3,300	3,290	3,300	3,290	3,300
Classe EUROVENT	(-/(-/		0,200	0,000	0,200	0,000	0,200	0,000
FFICIENZA ENERGETICA								
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Peg III	2016/2294\					
	PAMENIO	(Neg. UE	2010/2201)					
Refrigerazione d'ambiente Prated,c	(10)	kW	_					
EER	(10)(11)	KVV	<u> </u>	<u>-</u>	<u> </u>	<u> </u>	<u> </u>	
	(10)(11)	%	-	-				
Rendimento ns				-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA				00.1	100	100	147	170
PDesign SCOP	(4) (4)(13)	kW	88,1 3.71	99,1	109 3.47	128 3,59	3.42	170 3.38
Rendimento ns	(4)(13)	%	3,71	3,60 141	3,47	3,59	3,42 134	132
Classe di efficienza stagionale	(4)(14)	70	145	141	130	- 140	134	132
	(15)		-	-	-	-	-	-
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA								
ortata	(1)	I/s	5,336	6,009	7,003	7,792	9,075	10,08
erdita di carico allo scambiatore	(1)	kPa	48,7	47,7	53,7	47,7	50,0	61,6
SCAMBIATORE UTENZA IN RISCALDAN								
Portata	(3)	I/s	5,662	6,403	7,479	8,370	9,696	10,76
erdita di carico allo scambiatore	(3)	kPa	54,8	54,2	61,3	55,0	57,0	70,2
IRCUITO FRIGORIFERO								
I. compressori		N°	2	2	2	2	2	2
. circuiti		N°	11	1	11	11	11	1
arica refrigerante teorica		kg	30,2	34,7	41,7	48,7	54,3	63,8
IVELLI SONORI								
ressione sonora totale	(5)	dB(A)	71	71	71	71	72	73
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	89	90	91	91	92	93
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	89	90	91	91	92	93
IMENSIONI E PESI								
Peso in funzionamento	(9)	kg	1090	1270	1740	1840	2070	2200
4	(9)	mm	3360	3980	4110	4110	5110	5110
3	(9)	mm	1195	1195	2220	2220	2220	2220
1	(9)	mm	1980	1980	2150	2150	2150	2150

Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511
 Acqua scambiatore caido lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

NX-N-G06/LN-CA			0202P	0252P	0262P	0302P	0352P	0402P
Alimentazione elettrica		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3/50	400/3/50	400/3/50
RESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
otenza frigorifera	(1)	kW	45.64	52.16	57.44	76.20	83.63	95.03
otenza assorbita totale	(1)	kW	18,09	20.42	23.41	24.96	29.00	32.12
ER	(1)	kW/kW	2.519	2,559	2.453	3.048	2.883	2.960
REFRIGERAZIONE (EN14511 VALUE)			2,0.0	2,000	2,.00	0,0.0	2,000	2,000
otenza frigorifera	(1)(2)	kW	45.50	52.10	57.30	76.00	83.40	94.80
ER	(1)(2)	kW/kW	2,500	2,530	2,430	3,010	2,830	2,910
lasse EUROVENT	(· /(=/	IX V / IX V V	-	2,000	-	-	2,000	2,310
RISCALDAMENTO (GROSS VALUE)								
Potenza termica totale	(3)	kW	56,66	66.73	71,55	83.30	96.89	106.0
otenza assorbita totale	(3)	kW	16,84	19,88	21,32	24,83	28,16	31,50
OP	(3)	kW/kW	3,375	3,352	3,362	3,359	3,436	3,365
	(5)	KVV/KVV	3,373	3,332	3,302	3,339	3,430	3,303
RISCALDAMENTO (EN14511 VALUE) otenza termica totale	(3)(2)	kW	56,80	66.90	71,70	83,50	97,20	106,3
OP			,	,				
Classe EUROVENT	(3)(2)	kW/kW	3,330	3,310	3,320	3,320	3,360	3,310
FFICIENZA ENERGETICA		/ <u>-</u>						
FFICIENZA STAGIONALE IN RAFFRED	DUAMENTO	(Reg. UE	2016/2281)					
lefrigerazione d'ambiente								
rated,c	(10)	kW	-	-	-	-	-	-
EER	(10)(11)		-	-	-	-	-	-
tendimento ηs	(10)(12)	%	-	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALD								
Design	(4)	kW	41,9	49,1	53,1	62,0	71,3	77,3
COP	(4)(13)		4,01	3,85	3,84	3,61	3,63	3,62
tendimento ηs	(4)(14)	%	157	151	151	142	142	142
classe di efficienza stagionale	(15)		A++	A++	A++	A+	-	-
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA	AZIONE							
Portata	(1)	l/s	2,183	2.494	2.747	3.644	3.999	4.545
erdita di carico allo scambiatore	(1)	kPa	28,0	26,2	25,9	32,7	48,3	43,4
CAMBIATORE UTENZA IN RISCALDAI	MENTO		,	,	,	,	,	,
Portata	(3)	l/s	2.735	3.221	3.454	4.021	4.677	5,115
Perdita di carico allo scambiatore	(3)	kPa	44,0	43,7	41,0	39,8	66,0	54,9
IRCUITO FRIGORIFERO	. ,		,=	, .	,-	,-	,-	2.,0
I. compressori		N°	2	2	2	2	2	2
I. circuiti		N°	1	1	1	1	1	1
carica refrigerante teorica		kg	13,5	14,9	15,2	18,0	24,8	28,2
IVELLI SONORI		9	10,0	11,0	10,2	10,0	21,0	20,2
ressione sonora totale	(5)	dB(A)	59	60	61	64	65	66
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	77	78	79	82	83	84
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	79	80	81	84	84	85
IMENSIONI E PESI	(0)(0)	UD(A)	13	00	U1	04	0-7	00
eso in funzionamento	(9)	ka	680	740	750	870	950	1000
	(9)	kg	2395	2395	2395	2825	3360	3360
3	(9)	mm	2395 1195	2395 1195	1195	2825 1195	1195	1195
	(9)	mm	1865	1195	1865	1195	1980	1980
4	(9)	mm	1000	1000	1000	1900	1900	1900

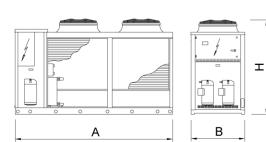
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511 1
- 2
- Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

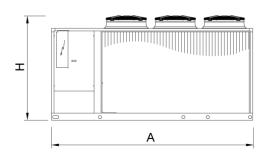
- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

POMPE DI CALORE NX-N-G06

0202P - 0812P 44,91-210,7 kW

NX-N-G06/LN-CA			0452P	0502P	0562P	0612P	0712P	0812P
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	105,5	119,9	138,5	158,7	181,4	203,9
Potenza assorbita totale	(1)	kW	36,88	40,62	46,63	51,90	59,49	65,30
ER	(1)	kW/kW	2,859	2,953	2,972	3,058	3,049	3,123
EFRIGERAZIONE (EN14511 VALUE)								
otenza frigorifera	(1)(2)	kW	105,2	119,5	138,2	158,4	181,0	203,6
ER	(1)(2)	kW/kW	2,810	2,900	2,920	3,010	3,000	3,070
Classe EUROVENT			-	-	´-	´-	´-	-
RISCALDAMENTO (GROSS VALUE)								
otenza termica totale	(3)	kW	117.3	132.6	154.9	173.4	200.9	222.9
otenza assorbita totale	(3)	kW	34,96	39.46	46,27	51,75	60,06	66,34
OP	(3)	kW/kW	3.351	3.357	3.346	3.354	3.343	3.362
ISCALDAMENTO (EN14511 VALUE)	. ,		-,	-,	-,	-,	-,	-,
otenza termica totale	(3)(2)	kW	117,6	133,0	155,3	173,7	201,2	223,4
COP	(3)(2)	kW/kW	3,290	3,300	3,290	3,300	3,290	3,300
lasse EUROVENT	(-/(-/		0,200	0,000	0,200	0,000	0,200	0,000
FFICIENZA ENERGETICA								
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Pag IIE	2016/2291\					
	DAMENTO	(Reg. UL	2010/2201)					
tefrigerazione d'ambiente	(10)	kW	_					
EER	(10)(11)	KVV	<u> </u>				-	
endimento ns	(10)(11)	%	-	-			-	
FFICIENZA STAGIONALE IN RISCALDA				-	-	-	-	
	(4)	keg. UE 81		99.1	109	128	147	170
Design COP	(4)(13)	KVV	88,1 3.71	3.60	3.47		3.42	
~ ~ .	. , , ,	%	- /	- ,	- ,	3,59	- /	3,38
tendimento ηs classe di efficienza stagionale	(4)(14)	70	145	141	136	140	134	132
	(15)		-	-	-	-	-	-
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA								
ortata	(1)	I/s	5,046	5,732	6,624	7,590	8,673	9,751
erdita di carico allo scambiatore	(1)	kPa	43,6	43,4	48,0	45,2	45,6	57,7
CAMBIATORE UTENZA IN RISCALDAN								
Portata	(3)	l/s	5,662	6,403	7,479	8,370	9,696	10,76
erdita di carico allo scambiatore	(3)	kPa	54,8	54,2	61,3	55,0	57,0	70,2
IRCUITO FRIGORIFERO								
I. compressori		N°	2	2	2	2	2	2
. circuiti		N°	1	1	1	1	1	1
arica refrigerante teorica		kg	30,2	34,7	41,7	48,7	54,3	63,8
IVELLI SONORI								
ressione sonora totale	(5)	dB(A)	66	65	65	65	66	67
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	84	84	85	85	86	87
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	85	85	86	86	87	88
IMENSIONI E PESI								
eso in funzionamento	(9)	kg	1100	1280	1750	1850	2080	2210
	(9)	mm	3360	3980	4110	4110	5110	5110
}	(9)	mm	1195	1195	2220	2220	2220	2220
								2150


Note


- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511
- 2 valori nieriu alia normativa En 14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche 4
- AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione de descuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R454B [GWP₁₀₀ 466] ad effetto serra Dati certificati in EUROVENT

Disegno dimensionale

Unità da esterno reversibile in pompa di calore per la produzione di acqua refrigerata/riscaldata con compressori ermetici rotativi di tipo Scroll dedicati per l'utilizzo di gas refrigerante R454B a basso GWP e non dannoso per l'ozono, ventilatori elicoidali, batteria di condensazione con tubi in rame ed alette in alluminio, scambiatore a fascio tubiero e valvola di espansione termostatica meccanica o elettronica, a seconda del modello. Pannellatura esterna in peraluman e basamento in acciaio zincato e verniciato. La gamma è composta da unità equipaggiate con quattro compressori in configurazione tandem su due circuiti indipendenti.

Comando

Controllore elettronico W3000TE

W3000TE con tastiera Compact e display LCD permette la consultazione e l'intervento sull'unità per mezzo di un menu multi-livello, con impostazione a scelta della lingua (19 lingue disponibili).

La termoregolazione si basa sull'esclusivo algoritmo Quick-Mind, dotato di logiche autoadattative, utili nei sistemi con ridotto contenuto d'acqua. In alternativa sono impostabili regolazioni proporzionale o proporzionale-integrale.

La diagnostica comprende una completa gestione degli allarmi, con le funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità.

Per sistemi a più unità è possibile la regolazione delle risorse tramite dispositivi proprietari opzionali. Inoltre può essere attuata la contabilizzazione dei consumi e delle prestazioni. La supervisione è realizzabile tramite diverse opzioni, con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, LonWorks. Compatibilità con tastiera remota (gestione fino a 8 unità).

L'orologio interno permette di creare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie.

Per lo sbrinamento (solo unità reversibili con sorgente aria) è impiegata una logica proprietaria di tipo auto-adattativo, caratterizzata dal monitoraggio di molteplici parametri di funzionamento e ambientali. Ciò permette di ridurre il numero e la durata degli sbrinamenti a vantaggio dell'efficienza energetica complessiva.

Refrigerante

di

Versioni

K	Efficienza standard in versione compatta	CA LN-CA	Classe A di efficienza Low Noise, Classe A di
LN-K	Low Noise, efficienza standard		efficienza
	in versione compatta	SL-CA	Super Low noise, Classe A
SL-K	Super Low noise, efficienza		efficienza

Configurazioni

- Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

REFRIGERANTE A BASSO GWP

Refrigerante di nuova generazione R454B che assicura una riduzione del GWP pari al 76% (GWP R454B = 467, GWP R410A = 1924 secondo IPCC 5a revisione), e un impatto sullo strato di ozono nullo.

ESTESO CAMPO DI FUNZIONAMENTO

standard in versione compatta

Il funzionamento a pieno carico è garantito fino a -15°C di temperatura aria esterna in modalità pompa di calore, e fino a 46°C in modalità chiller senza necessità di accessori aggiuntivi. A -15°C, l'unità è in grado di produrre acqua calda a pieno carico fino a 42°C.

VALVOLA DI ESPANSIONE ELETTRONICA

L'utilizzo della valvola di espansione elettronica apporta notevoli benefici specie in presenza di variabilità di carico e nelle diverse condizioni esterne. La sua introduzione su questa unità è conseguente alle accurate scelte progettuali inerenti alla circuitazione frigorifera e l'ottimizzazione del funzionamento in molteplici condizioni operative. La valvola di espansione elettronica è standard in tutte le versioni CA.

EFFICIENZA IN CLASSE A

Tutta la gamma è disponibile in classe energetica A (in riscaldamento). La versione CA garantisce alti livelli di efficienza grazie al generoso dimensionamento delle superfici di scambio ed ad una accurata gestione delle batterie di ventilazione.

SCAMBIATORE A FASCIO TUBIERO

Scambiatore a fascio tubiero per la massima flessibilità di installazione e minime perdite di carico sul lato impianto.

GRUPPO IDRONICO INTEGRATO

Disponibili kit idronici dotati di 1 o 2 pompe ad alta o bassa prevalenza.

DUE LIVELLI DI SILENZIOSITA'

Due distinti livelli di silenziosità disponibili. In questo modo è possibile identificare chiaramente l'unità a seconda dei requisiti richiesti in base alla destinazione impiantistica ed all'utilizzo finale.

Accessori

- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet
- Tastiera di controllo remota (distanza fino a 200m o fino a 500m)
- Avviatori "Soft-start"
- Valvola termostatica elettronica
- Funzione Notturna (night mode) per limitare il livello sonoro dell'unità.
- Funzione User Limit Control (U.L.C) per garantire l'avviamento sicuro dell'unità in condizioni critiche di temperatura acqua o aria.
- Interfaccia utente KIPlink
- Batterie tradizionali disponibili con alette pre-verniciate o con trattamento protettivo Fin Guard Silver.
- Ventilatori EC "brushless"
- Soft start
- Ventilatori EC "brushless"
- Kit idronico disponibile in diverse configurazioni con 1 o 2 pompe a velocità fissa o variale e accumulo

NX-N-G06			0604T	0704T	0804T	0904T	1004T	1104T	1204T
limentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
RESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera	(1)	kW	153,7	178,4	202,5	235,4	263,2	286,0	306,5
Potenza assorbita totale	(1)	kW	53,47	63,25	71,14	83,39	93,30	99,83	108,6
ER	(1)	kW/kW	2,873	2,818	2,848	2,823	2,821	2,866	2,822
REFRIGERAZIONE (EN14511 VALUE)									
Potenza frigorifera	(1)(2)	kW	153,5	178,0	202,2	235,1	262,8	285,7	306,1
ER	(1)(2)	kW/kW	2,850	2,790	2,810	2,790	2,780	2,840	2,790
Classe EUROVENT			· -	-	-	-	· -	· -	-
RISCALDAMENTO (GROSS VALUE)									
Potenza termica totale	(3)	kW	163,1	189,6	216,6	255,0	281,5	304,5	323,9
otenza assorbita totale	(3)	kW	52.03	61.14	69,38	82,25	90.54	97,31	103.8
OP	(3)	kW/kW	3,137	3,103	3,121	3,098	3,110	3,129	3,120
RISCALDAMENTO (EN14511 VALUE)	. ,		-, -	.,	-,	.,	-,	-, -	-, -
Potenza termica totale	(3)(2)	kW	163,3	190,0	217,0	255,4	281,9	304,9	324,3
COP	(3)(2)	kW/kW	3,120	3,080	3,080	3,060	3,070	3,100	3,090
Classe EUROVENT	\-\(\frac{1}{2}\)\(\frac{1}{2}\)		-,	2,300	2,300	2,300	2,3.0	2,,,00	3,000
FFICIENZA ENERGETICA									
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Pag IIE	2016/2281)						
Refrigerazione d'ambiente	DAMERIO	(Itteg. OL	2010/2201)						
Prated,c	(10)	kW	_	_	_				
EER	(10)(11)	KVV							
Rendimento ns	(10)(11)	%							
FFICIENZA STAGIONALE IN RISCALDA	. ,, ,		13/2013)						
PDesign	(4)	kW	121	140	162	190	213	229	246
SCOP	(4)(13)	17.4.4	3.53	3.55	3,54	3.46	3.51	3,53	3.48
Rendimento ns	(4)(14)	%	138	139	138	136	137	138	136
Classe di efficienza stagionale	(15)	,,,	-	-	-	-	-	-	-
CAMBIATORI	(10)								
CAMBIATORE UTENZA IN REFRIGERA	ZIONE								
Portata	(1)	l/s	7,349	8,529	9.686	11,26	12,58	13,68	14.66
Perdita di carico allo scambiatore	(1)	kPa	20.3	27.3	44.0	40.9	51.1	32.7	37.6
	. ,	NFa	20,3	21,5	44,0	40,9	31,1	52,1	37,0
CAMBIATORE UTENZA IN RISCALDAN Portata	(3)	l/s	7.873	9.154	10.46	12.31	13.59	14.70	15.64
Perdita di carico allo scambiatore	(3)	kPa	23,3	31,5	51,3	48,9	59,6	37,8	42,8
	(3)	KFA	23,3	31,3	31,3	40,9	59,0	31,0	42,0
CIRCUITO FRIGORIFERO		N°	4	4	4	4	4	4	4
I. compressori I. circuiti		N°	2	2	2	2	2	2	2
i. circuiti Carica refrigerante teorica			32.4	50.6	69.5	69.6	69.7	89.2	89.3
		kg	32,4	50,0	09,0	09,0	09,1	09,2	09,3
IVELLI SONORI	(5)	dB(A)	73	72	73	74	75	75	75
ressione sonora totale	. ,	. ,	92	92	93	94	75 95	75 95	75 95
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	92	92	93	94	95 95	95 95	95 95
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	92	92	93	94	95	95	95
DIMENSIONI E PESI	(0)		4050	2070	0040	0.470	0040	2000	2442
eso in funzionamento	(9)	kg	1850	2070	2210	2470	2610	3090	3110
\	(9)	mm	3110	4110	4110	4110	4110	5110	5110
3	(9)	mm	2220	2220	2220	2220	2220	2220	2220
Н	(9)	mm	2150	2150	2150	2150	2150	2150	2150

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511 1
- 2
- Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

0604T - 1204T 142,1-321,9 kW

NX-N-G06/LN-K			0604T	0704T	0804T	0904T	1004T	1104T	1204T
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
RESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera	(1)	kW	146,6	167,4	192,7	224,9	247,8	271,4	291,0
otenza assorbita totale	(1)	kW	53,25	64,08	73,18	84,23	94,81	101,6	111,4
ER	(1)	kW/kW	2,750	2,612	2,633	2,671	2,614	2,671	2,612
REFRIGERAZIONE (EN14511 VALUE)									
otenza frigorifera	(1)(2)	kW	146,4	167,1	192,3	224,6	247,5	271,1	290,6
ER	(1)(2)	kW/kW	2,730	2,590	2,600	2,640	2,580	2,650	2,590
Classe EUROVENT			-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)									
otenza termica totale	(3)	kW	155,4	180,7	208,1	239,7	266,7	291,5	309,3
otenza assorbita totale	(3)	kW	48,38	57,75	65,85	76,99	85,17	91,97	98,34
OP	(3)	kW/kW	3,211	3,126	3,158	3,113	3,130	3,168	3,146
ISCALDAMENTO (EN14511 VALUE)									
otenza termica totale	(3)(2)	kW	155,7	181,0	208,4	240,0	267,1	291,8	309,7
OP	(3)(2)	kW/kW	3,190	3,100	3,120	3,080	3,090	3,140	3,120
Classe EUROVENT			,	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· ·
FFICIENZA ENERGETICA									
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente		(
Prated,c	(10)	kW	_	_	_	_	_	_	_
EER	(10)(11)		_						
Rendimento ns	(10)(12)	%		-	-	-	-	-	_
FFICIENZA STAGIONALE IN RISCALDA	. ,, ,		13/2013)						
PDesign	(4)	kW	119	127	161	185	210	226	242
SCOP	(4)(13)		3.65	3.61	3.85	3.68	3.67	3.73	3.76
Rendimento ns	(4)(14)	%	143	141	151	144	144	146	147
Classe di efficienza stagionale	(15)		-	-	-	-	-	-	-
CAMBIATORI	(- /								
CAMBIATORE UTENZA IN REFRIGERA	ZIONE								
Portata	(1)	I/s	7.012	8,005	9,213	10.76	11,85	12.98	13,91
Perdita di carico allo scambiatore	(1)	kPa	18.5	24.1	39.8	37.3	45.3	29.5	33.9
CAMBIATORE UTENZA IN RISCALDAM	. ,	ili u	10,0	21,1	00,0	07,0	10,0	20,0	00,0
Portata	(3)	l/s	7.503	8.722	10.05	11.57	12.88	14.07	14.93
Perdita di carico allo scambiatore	(3)	kPa	21,2	28,6	47,3	43,2	53,5	34,6	39,0
CIRCUITO FRIGORIFERO	(-)	i i u	21,2	20,0	11,0	10,2	00,0	01,0	00,0
I. compressori		N°	4	4	4	4	4	4	4
I. circuiti		N°	2	2	2	2	2	2	2
carica refrigerante teorica		kg	32.4	50.6	69.5	69.6	69.7	89.2	89.3
IVELLI SONORI		ng	∪ <u>_</u> ,¬	55,0	55,6	55,6	55,1	55,2	55,5
ressione sonora totale	(5)	dB(A)	67	66	67	68	69	70	70
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	86	86	87	88	89	90	90
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	87	87	88	89	90	91	91
IMENSIONI E PESI	(5/(5)	ab(/t)	0,		00	00	50	J1	01
eso in funzionamento	(9)	kg	1900	2120	2260	2520	2660	3130	3160
	(9)	mm	3110	4110	4110	4110	4110	5110	5110
3	(9)	mm	2220	2220	2220	2220	2220	2220	2220
			2220		2220		2220	2220	2220

Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511
 Acqua scambiatore caido lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche

AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

NX-N-G06/SL-K			0604T	0704T	0804T	0904T	1004T	1104T	1204T
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera `	(1)	kW	142,1	168,5	193,6	222,7	245,4	269,8	291,2
Potenza assorbita totale	(1)	kW	54,04	64,12	73,78	82,41	93,71	103,3	111,6
EER	(1)	kW/kW	2,631	2,629	2,623	2,703	2,619	2,612	2,609
REFRIGERAZIONE (EN14511 VALUE)									
Potenza frigorifera	(1)(2)	kW	141,9	168,2	193,3	222,4	245,1	269,5	290,9
ER	(1)(2)	kW/kW	2,610	2,600	2,590	2,670	2,590	2,590	2,590
Classe EUROVENT			´-	-	-	· -	´-	´-	´-
RISCALDAMENTO (GROSS VALUE)									
Potenza termica totale	(3)	kW	150.6	181.4	209.8	241.4	265.7	288.9	310.3
Potenza assorbita totale	(3)	kW	46,89	58,37	66,45	75,29	83,51	91,86	99,17
COP	(3)	kW/kW	3,211	3,106	3,155	3,206	3,182	3,144	3,128
RISCALDAMENTO (EN14511 VALUE)			,			,	,	,	,
Potenza termica totale	(3)(2)	kW	150,8	181,7	210,2	241,8	266,1	289,2	310,7
COP	(3)(2)	kW/kW	3,190	3.080	3,120	3,170	3,140	3,120	3,100
Classe EUROVENT	, , , ,		-,	-,	-,	-, -	-, -	-, -	-,
FFICIENZA ENERGETICA									
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Rea HF	2016/2281)						
Refrigerazione d'ambiente	DANILITIO	(Iteg. OL	2010/2201)						
Prated.c	(10)	kW	_						
SEER	(10)(11)	KVV.			<u> </u>				
Rendimento ns	(10)(11)	%							
EFFICIENZA STAGIONALE IN RISCALDA	. ,, ,								
PDesign	(4)	kW	118	129	162	186	207	225	243
SCOP	(4)(13)	IV V V	3,79	3,53	3,80	3,91	3.79	3.71	3.73
Rendimento ns	(4)(14)	%	149	138	149	153	149	145	146
Classe di efficienza stagionale	(15)	70	-	-	-	-	-	-	-
SCAMBIATORI	(.0)								
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE								
Portata	(1)	l/s	6.796	8.057	9.259	10.65	11.74	12.90	13.93
Perdita di carico allo scambiatore	(1)	kPa	17,4	24,4	40,2	36,6	44,5	29,1	33,9
		KFA	17,4	24,4	40,2	30,0	44,5	29, 1	33,9
SCAMBIATORE UTENZA IN RISCALDAN Portata	(3)	l/s	7.270	8.757	10.13	11.65	12.83	13.94	14.98
Perdita di carico allo scambiatore	(3)	kPa	19.9	28.8	48.1	43.8	53.1	34.0	39.3
	(3)	кра	19,9	20,0	40, 1	43,0	ا ,اد	34,0	39,3
CIRCUITO FRIGORIFERO		N°	4	4	4	4	4	4	4
V. compressori		N°	2	2	2	2	2	<u>4</u> 2	2
V. circuiti									89.3
Carica refrigerante teorica		kg	32,4	50,6	69,5	69,6	69,7	89,2	89,3
IVELLI SONORI	(5)	-ID(A)	00	00	00	0.4	05	00	07
Pressione sonora totale	(5)	dB(A)	63	63	63	64	65	66	67
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	82	83	83	84	85	86	87
Potenza sonora totale in riscaldamento	(6)(8)	dB(A)	83	84	84	85	86	87	88
DIMENSIONI E PESI	(0)		1000	2000	00.10	0700	00.40		0000
Peso in funzionamento	(9)	kg	1900	2200	2340	2790	2940	3260	3290
<u> </u>	(9)	mm	3110	4110	4110	5110	5110	5110	5110
3	(9)	mm	2220	2220	2220	2220	2220	2220	2220
Н	(9)	mm	2150	2150	2150	2150	2150	2150	2150

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511
- 2 Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

0604T - 1204T 142,1-321,9 kW

NX-N-G06/CA			0604T	0704T	0804T	0904T	1004T	1104T	1204T
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera `	(1)	kW	157,5	183,1	213,5	243,2	271,8	297,7	321,9
Potenza assorbita totale	(1)	kW	52,37	60,61	69,50	80,19	90,09	98,55	106,5
EER	(1)	kW/kW	3,006	3,021	3,072	3,032	3,017	3,022	3,023
REFRIGERAZIONE (EN14511 VALUE)									
Potenza frigorifera	(1)(2)	kW	157,3	182,8	213,1	242,9	271,5	297,4	321,5
EER	(1)(2)	kW/kW	2,980	2,990	3,020	2,990	2,990	2,990	2,990
Classe EUROVENT			-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)									
Potenza termica totale	(3)	kW	161,2	187,1	223,3	249,8	275,3	309,3	328,7
Potenza assorbita totale	(3)	kW	48,62	56,41	67,17	75,23	83,09	93,24	99,13
COP	(3)	kW/kW	3,317	3,317	3,323	3,322	3,313	3,319	3,317
RISCALDAMENTO (EN14511 VALUE)									
Potenza termica totale	(3)(2)	kW	161,4	187,4	223,7	250,2	275,6	309,7	329,1
COP	(3)(2)	kW/kW	3,290	3,290	3,280	3,280	3,280	3,280	3,280
Classe EUROVENT									
EFFICIENZA ENERGETICA									
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Rea. UE	2016/2281)						
Refrigerazione d'ambiente		, , ,	,						
Prated,c	(10)	kW	-	-	-	-	-	-	_
SEER	(10)(11)		-	-	-	-	-	-	-
Rendimento ns	(10)(12)	%	-	-	-	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA	AMENTO (Rea. UE 8	13/2013)						
PDesign	(4)	kW	115	142	167	189	211	233	250
SCOP	(4)(13)		3,80	4,02	3,96	4,02	3,94	3,87	3,91
Rendimento ηs	(4)(14)	%	149	158	155	158	154	152	154
Classe di efficienza stagionale	(15)		-	-	-	-	-	-	-
SCAMBIATORI									
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE								
Portata	(1)	l/s	7,534	8,757	10,21	11,63	13,00	14,24	15,39
Perdita di carico allo scambiatore	(1)	kPa	21,3	28,8	48,9	43,6	29,6	35,5	41,5
SCAMBIATORE UTENZA IN RISCALDAN	MENTO								
Portata	(3)	l/s	7,780	9,031	10,78	12,06	13,29	14,93	15,87
Perdita di carico allo scambiatore	(3)	kPa	22,7	30,7	54,5	46,9	30,9	39,0	44,1
CIRCUITO FRIGORIFERO									
N. compressori		N°	4	4	4	4	4	4	4
N. circuiti		N°	2	2	2	2	2	2	2
Carica refrigerante teorica		kg	40,5	62,8	81,4	81,5	81,5	104	104
LIVELLI SONORI									
Pressione sonora totale	(5)	dB(A)	72	72	74	74	75	77	77
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	92	92	94	94	95	97	97
Potenza sonora totale in riscaldamento	(6)(8)	dB(A)	92	92	94	94	95	97	97
DIMENSIONI E PESI									
Peso in funzionamento	(9)	kg	2100	2240	2630	2790	3100	3580	3580
A	(9)	mm	4110	4110	5110	5110	5110	6110	6110
В	(9)	mm	2220	2220	2220	2220	2220	2220	2220
Н	(9)	mm	2150	2150	2150	2150	2150	2150	2150

Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511
 Acqua scambiatore caido lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche

AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

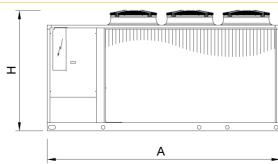
NX-N-G06/LN-CA			0604T	0704T	0804T	0904T	1004T	1104T	1204T
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera `	(1)	kW	152,3	179,9	207,4	237,9	265,4	288,4	311,7
Potenza assorbita totale	(1)	kW	50,27	58,47	66,21	77,01	87,62	94,19	102,2
EER	(1)	kW/kW	3,028	3,075	3,133	3,090	3,030	3,062	3,050
REFRIGERAZIONE (EN14511 VALUE)									
Potenza frigorifera	(1)(2)	kW	152,1	179,5	207,0	237,6	265,1	288,1	311,3
ER	(1)(2)	kW/kW	3,000	3,040	3,080	3,050	3,000	3,030	3,010
Classe EUROVENT			´-	-	-	· -	´-	´-	´-
RISCALDAMENTO (GROSS VALUE)									
Potenza termica totale	(3)	kW	159.8	195.0	224.3	258.3	285.7	309.0	336.8
Potenza assorbita totale	(3)	kW	47,56	58,84	67,11	77,78	86,13	92,84	101,4
COP	(3)	kW/kW	3,357	3,316	3,343	3,320	3,318	3,330	3,321
RISCALDAMENTO (EN14511 VALUE)			,			,	,	,	,
Potenza termica totale	(3)(2)	kW	160,0	195,3	224,7	258,7	286,0	309,4	337,2
COP	(3)(2)	kW/kW	3,330	3,280	3,290	3,280	3,290	3,300	3,280
Classe EUROVENT	. , , ,	,,,,,		-,	-,	-,	-,	-,,,	,,
EFFICIENZA ENERGETICA									
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg UF	2016/2281)						
Refrigerazione d'ambiente	DAMENTO	(Itteg. OL	2010/2201)						
Prated.c	(10)	kW	_	_	_	_	_	_	_
SEER	(10)(11)	K V V			<u> </u>				
Rendimento ns	(10)(11)	%							
EFFICIENZA STAGIONALE IN RISCALDA	. ,, ,								
PDesign	(4)	kW	114	145	168	193	215	232	253
SCOP	(4)(13)	IV V V	4,03	4.06	4,18	4.13	4.02	4.08	4.03
Rendimento ns	(4)(14)	%	158	160	164	162	158	160	158
Classe di efficienza stagionale	(15)	70	-	-	-	-	-	-	-
SCAMBIATORI	(.0)								
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE								
Portata	(1)	l/s	7.282	8.601	9.916	11.38	12.69	13.79	14.91
Perdita di carico allo scambiatore	(1)	kPa	19,9	27,8	46,1	41,8	28,2	33,3	38,9
	. ,	Kra	19,9	21,0	40, 1	41,0	20,2	33,3	30,9
SCAMBIATORE UTENZA IN RISCALDAN		l/s	7 711	0.412	10.83	10.47	12.70	14.02	16.06
Portata	(3)		7,711	9,412	,	12,47	13,79	14,92	16,26
Perdita di carico allo scambiatore	(3)	kPa	22,3	33,3	55,0	50,2	33,3	38,9	46,2
CIRCUITO FRIGORIFERO		N10	4	4	4	4	4	4	
I. compressori		N°	4	4	4	4	4	4	4
N. circuiti		N°	2	2	2	2	2	2	2
Carica refrigerante teorica		kg	40,5	62,8	81,4	81,5	81,5	104	104
IVELLI SONORI	(5)	ID(A)	00	0.7	00	00	70	70	7.
Pressione sonora totale	(5)	dB(A)	66	67	68	69	70	70	71
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	86	87	88	89	90	90	91
Potenza sonora totale in riscaldamento	(6)(8)	dB(A)	87	88	89	90	91	91	92
DIMENSIONI E PESI	(2)								
Peso in funzionamento	(9)	kg	2100	2320	2630	2890	3200	3550	3660
1	(9)	mm	4110	4110	5110	5110	5110	6110	6110
3	(9)	mm	2220	2220	2220	2220	2220	2220	2220
H	(9)	mm	2150	2150	2150	2150	2150	2150	2150

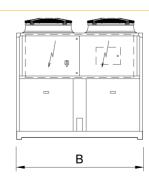
- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511 2
- Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

POMPE DI CALORE NX-N-G06

0604T - 1204T 142,1-321,9 kW


NX-N-G06/SL-CA			0604T	0704T	0804T	0904T	1004T	1104T	1204T
limentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
RESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera `	(1)	kW	151,4	178,1	206,9	234,9	263,8	286,7	311,2
Potenza assorbita totale	(1)	kW	49,98	58,78	66,45	77,27	86,73	94,35	102,6
ER	(1)	kW/kW	3,028	3,029	3,116	3,039	3,043	3,040	3,033
REFRIGERAZIONE (EN14511 VALUE)									
otenza frigorifera	(1)(2)	kW	151,2	177,8	206,6	234,6	263,5	286,3	310,9
ER	(1)(2)	kW/kW	3,000	3,000	3,070	3,000	3,010	3,010	3,000
Classe EUROVENT			-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)									
Potenza termica totale	(3)	kW	159,1	190,7	223,4	252,2	281,5	305,6	334,6
otenza assorbita totale	(3)	kW	46,87	57,35	67,12	75,77	84,34	92,15	100,5
OP	(3)	kW/kW	3,392	3,328	3,329	3,327	3,339	3,318	3,329
RISCALDAMENTO (EN14511 VALUE)			-						
Potenza termica totale	(3)(2)	kW	159,3	191,0	223,8	252,5	281,9	306,0	335,0
COP	(3)(2)	kW/kW	3,370	3,300	3,280	3,290	3,310	3,280	3,290
Classe EUROVENT			,	,	,	,	,	,	,
FFICIENZA ENERGETICA									
FFICIENZA STAGIONALE IN RAFFREDI	DAMENTO	(Reg. UE	2016/2281)						
efrigerazione d'ambiente		(
rated,c	(10)	kW	_	_	_	_	_	_	_
EER	(10)(11)	17.4.4	_						
Rendimento ns	(10)(12)	%	_	-	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA	. , , ,		13/2013)						
Design	(4)	kW	112	144	167	190	212	231	252
SCOP	(4)(13)		3.92	4.10	4.08	4.15	4.03	4.06	4.05
Rendimento ns	(4)(14)	%	154	161	160	163	158	159	159
Classe di efficienza stagionale	(15)		-	-	-	-	-	-	
CAMBIATORI	(- /								
CAMBIATORE UTENZA IN REFRIGERA	ZIONE								
Portata	(1)	l/s	7,239	8,516	9.896	11,23	12,62	13,71	14,88
Perdita di carico allo scambiatore	(1)	kPa	19.7	27.3	45.9	40.7	27.8	32.9	38.8
CAMBIATORE UTENZA IN RISCALDAM	. ,	Mα	10,1	21,0	40,0	40,1	21,0	02,0	00,0
Portata	(3)	l/s	7.680	9.204	10.79	12.17	13.59	14.75	16.15
Perdita di carico allo scambiatore	(3)	kPa	22,2	31,8	54,6	47,8	32,3	38,1	45,6
IRCUITO FRIGORIFERO	(0)	iti d	~~,~	01,0	04,0	47,0	02,0	00,1	40,0
I. compressori		N°	4	4	4	4	4	4	4
I. circuiti		N°	2	2	2	2	2	2	2
carica refrigerante teorica		kg	40.5	62.8	81.4	81.5	95.4	104	104
IVELLI SONORI		кg	70,0	02,0	01,7	01,0	55,4	10-7	104
Pressione sonora totale	(5)	dB(A)	63	63	64	65	66	67	68
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	83	83	84	85	86	87	88
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	84	84	85	86	87	88	89
DIMENSIONI E PESI	(0)(0)	UD(A)	0-	04	00	00	O i	00	03
Peso in funzionamento	(9)	kg	2180	2320	2730	2890	3500	3550	3660
	(9)	mm	4110	4110	5110	5110	6110	6110	6110
1									
3	(9)	mm	2220	2220	2220	2220	2220	2220	2220


Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511 2
- valori nieriu alia normativa En 14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
- Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R454B [GWP₁₀₀ 466] ad effetto serra Dati certificati in EUROVENT

7 Potenza sonora in refrigerazione, outdoors.
8 Potenza sonora in riscaldamento, outdoors.
9 Unità in configurazione de descuzione standard, priva di accessori opzionali.
10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
11 Indice di efficienza energetica stagionale
12 Efficienza energetica stagionale del raffreddamento d'ambiente
13 Coefficiente di prestazione stagionale
14 Efficienza energetica stagionale del riscaldamento d'ambiente
15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Disegno dimensionale

NX2-N-G06

0344 - 0808 316.4-799.2 kW

Unità da esterno per la produzione di acqua refrigerata/riscaldata con compressori ermetici rotativi di tipo Scroll dedicati per l'utilizzo di R454B, ventilatori elicoidali, batteria di condensazione con tubi in rame e alette in alluminio, scambiatore a fascio tubiero e valvola di espansione elettronica. La gamma comprende le versioni a quattro, sei e otto compressori, tutte multi-circuito.

Comando

Controllore elettronico W3000+

Il controllore W3000+ si caratterizza per le evolute funzioni e regolazioni proprietarie.

La tastiera Compact dispone di comandi funzionali e un display LCD per la gestione dell'unità mediante menu multi-lingua (19 lingue disponibili). La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità. È inoltre possibile programmare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie. Come opzione, è disponibile l'innovativa interfaccia utente KIPlink (Keyboard In your Pocket) che permette di operare sull'unità direttamente da smartphone e

La termoregolazione si basa sull'esclusivo algoritmo Quick-Mind, dotato di logiche auto-adattative, utili nei sistemi con ridotto contenuto d'acqua. In alternativa sono impostabili regolazioni proporzionale o proporzionale-integrale.

Per sistemi a più unità è possibile la regolazione delle risorse tramite dispositivi proprietari opzionali. Inoltre, può essere attuata la contabilizzazione dei consumi/prestazioni. Il controllo a portata idraulica variabile è previsto di standard (funzione VPF.E).

La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Echelon, Bacnet-over-IP, Bacnet MS/TP RS485, Konnex, ModBus TCP/IP, SNMP, M-net. Compatibilità con tastiera remota (gestione fino a 8 unità).

Refrigerante

Versioni

- K Versione efficienza standard
- A Versione alta efficienza
- SL Versione super-silenziata

Configurazioni

- Funzione base
- D Funzione recupero parziale del calore di condensazione

Caratteristiche

REFRIGERANTE A BASSO GWP

Refrigerante di nuova generazione R454B che assicura una riduzione del GWP pari al 76% (GWP R454B = 467, GWP R410A = 1924 secondo IPCC 5a revisione), e un impatto sullo strato di ozono nullo.

SCAMBIATORE A FASCIO TUBIERO

Scambiatore a fascio tubiero per la massima flessibilità di installazione e minime perdite di carico sul lato impianto.

GRUPPO IDRONICO INTEGRATO

Il gruppo idronico racchiude in sé i principali componenti idraulici; disponibile in diverse configurazioni con pompa in-line singola o gemellare, ad alta o bassa prevalenza, a velocità fissa o variabile ed accumulo inerziale.

PORTATA VARIABILE

Regolazione avanzata delle pompe inverter a seconda del carico richiesto che consente di ridurre i consumi elettrici e garantire il funzionamento dell'unità anche in condizioni critiche.

VALVOLA DI ESPANSIONE ELETTRONICA DI SERIE

La valvola di espansione elettronica migliora l'efficienza dell'unità, soprattutto in presenza di variabilità di carico e di temperatura della sorgente. Tutto ciò si traduce in una riduzione dei consumi, una rapida messa a regime e un' estensione dei limiti operativi.

ESTESO CAMPO DI FUNZIONAMENTO

Funzionamento garantito con temperature aria esterna fino a -15°C durante la stagione invernale e fino a 46 °C nella stagione estiva. Produzione di acqua calda fino a 55°C senza l'aggiunta di accessori.

AMPIO RANGE DI POTENZA

Gamma comprensiva di unità fino a 8 compressori scroll, tutte multi-circuito per un esteso range di potenza frigorifera, fino a 800 kW.

CONFIGURAZIONE DELLA SEZIONE VENTILANTE BREVETTATA

Soluzione tecnologica brevettata da MEHITS per garantire l'indipendenza dei circuiti, ridurre il footprint dell'unità ed aumentare l'efficienza ai carichi parziali sia in modalità riscaldamento che raffreddamento.

Accessori

- Avviatori "Soft-start"
- Tastiera di controllo remota (distanza fino a 200m o fino a 500m)
- Valvola termostatica elettronica
- Funzione Notturna (night mode) per limitare il livello sonoro dell'unità.
- Funzione User Limit Control (U.L.C) per garantire l'avviamento sicuro dell'unità in condizioni critiche di temperatura acqua o aria.
- Interfaccia utente KIPlink
- Batterie tradizionali disponibili con alette pre-verniciate o con trattamento protettivo Fin Guard Silver.

- Ventilatori EC "brushless"
- Kit idronico disponibile in diverse configurazioni con 1 o 2 pompe a velocità fissa o variale e accumulo
- Connettività remota con protocolli: ModBus, ModBus over IP (TCP/IP), Echelon, BacNet MS/TP RS485, Bacnet over IP, Konnex, SNMP
- Interruttori magnetotermici sui carichi
- Rifasamento compressori
- Dispositivo per la rilevazione fughe di refrigerante

NX2-N-G06 / K			0344	0364	0404	0446	0506	0526	0546
limentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
RESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera	(1)	kW	334,7	355,0	382,4	430,6	475,7	516,4	533,6
Potenza assorbita totale	(1)	kW	122,8	126,2	141,6	163,0	175,4	183,7	189,4
ER	(1)	kW/kW	2,726	2,813	2,701	2,642	2,712	2,811	2,817
REFRIGERAZIONE (EN14511 VALUE)			,	,		,	,	,	,
Potenza frigorifera	(1)(2)	kW	334,3	354,7	382,0	430,2	475,1	515,9	533,1
ER	(1)(2)	kW/kW	2,690	2,780	2,670	2,620	2,680	2,780	2,790
Classe EUROVENT	. , , ,		-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)									
Potenza termica totale	(3)	kW	364.7	386.5	414.9	469.4	512.7	560.2	579.9
Potenza assorbita totale	(3)	kW	119.3	124,9	134,8	155.5	168.4	181.7	186.9
OP	(3)	kW/kW	3,057	3,094	3,078	3,019	3,045	3,083	3,103
ISCALDAMENTO (EN14511 VALUE)			-,	-,	-,	-,	-,	-,	-,
otenza termica totale	(3)(2)	kW	365,2	387,0	415.4	470,0	513,3	560,7	580,5
COP	(3)(2)	kW/kW	3,020	3.060	3,040	2,980	3,000	3,050	3,070
Classe EUROVENT	(-/(-/	1000/1000	0,020	0,000	0,010	2,000	0,000	0,000	0,010
FFICIENZA ENERGETICA									
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	/Dog IIE	2046/22041						
	DAMENTO	(Reg. UE	2010/2201)						
Refrigerazione d'ambiente Prated.c	(10)	kW	_	_	_				
EER	(10)(11)	KVV							
endimento ns	(10)(11)	%							
FFICIENZA STAGIONALE IN RISCALDA	. ,, ,								
PDesign	(4)	kW kW	268	294	323	369	388	363	373
SCOP	(4)(13)	KVV	3.60	3.70	3.73	3.66	3.53	3.49	3.53
Rendimento ns	(4)(14)	%	141	145	146	143	138	137	138
Classe di efficienza stagionale	(15)	/0	- 141	-	-	-	-	-	-
CAMBIATORI	(13)			-	-			<u>-</u>	
	TIONE								
CAMBIATORE UTENZA IN REFRIGERA			40.04	40.00	40.00	00.50	00.75	04.70	05.50
Portata	(1)	l/s	16,01	16,98	18,29	20,59	22,75	24,70	25,52
Perdita di carico allo scambiatore	(1)	kPa	48,1	38,5	44,7	43,4	53,0	43,5	46,4
CAMBIATORE UTENZA IN RISCALDAN		.,	47.00	40.00	00.00	00.00	04.75	07.04	07.00
Portata	(3)	l/s	17,60	18,66	20,03	22,66	24,75	27,04	27,99
Perdita di carico allo scambiatore	(3)	kPa	58,2	46,5	53,5	52,6	62,7	52,1	55,9
IRCUITO FRIGORIFERO		h./^							
I. compressori		N°	4	4	4	6	6	6	6
I. circuiti		N°	2	2	2	3	3	3	3
arica refrigerante teorica		kg	64,8	68,4	68,4	83,7	87,3	98,1	113
IVELLI SONORI	(-)								
ressione sonora totale	(5)	dB(A)	76	76	76	76	76	76	76
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	96	96	96	96	97	97	97
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	96	96	96	96	97	97	97
IMENSIONI E PESI									
eso in funzionamento	(9)	kg	3030	3110	3150	4040	4400	4530	4600
	(9)	mm	3905	3905	3905	4515	5690	5690	5690
3	(9)	mm	2260	2260	2260	2260	2260	2260	2260
H	(9)	mm	2450	2450	2450	2450	2450	2450	2450

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511 1
- 2 Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

POMPE DI CALORE **NX2-N-G06**

0344 - 0808 316,4-799,2 kW

NX2-N-G06 / SL			0344	0364	0404	0446	0506	0526	0546
limentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
RESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera	(1)	kW	316.4	336.8	370.6	409.4	444.0	486.6	506.1
Potenza assorbita totale	(1)	kW	128.4	132,8	144.6	170.3	184,7	194.0	199.4
ER	(1)	kW/kW	2.464	2.536	2.563	2.404	2.404	2.508	2.538
REFRIGERAZIONE (EN14511 VALUE)			, -	,	,	, -	, -	,	,
Potenza frigorifera	(1)(2)	kW	316,0	336,4	370,2	409,0	443,6	486.1	505,7
ER	(1)(2)	kW/kW	2,440	2,510	2,540	2,380	2,380	2,490	2,510
Classe EUROVENT	(/(/		-	-,	-,	-,	-,	-,	-
RISCALDAMENTO (GROSS VALUE)									
Potenza termica totale	(3)	kW	362.0	379.2	420.1	470.8	511.1	552.0	568.8
Potenza assorbita totale	(3)	kW	114.1	120.5	131,1	150.6	162,1	174.2	180.3
COP	(3)	kW/kW	3,173	3,147	3,204	3,126	3,153	3,169	3,155
RISCALDAMENTO (EN14511 VALUE)	(-)		0,	0,111	0,20.	0,120	0,100	0,.00	0,.00
otenza termica totale	(3)(2)	kW	362,5	379,6	420,6	471,4	511,7	552,6	569.4
COP	(3)(2)	kW/kW	3,130	3.110	3,160	3,090	3,110	3,130	3,120
Classe EUROVENT	(0)(-)	144/144	0,100	0,110	0,100	0,000	0,110	0, 100	5,120
FFICIENZA ENERGETICA									
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	/Pog IIE	2046/22041						
	DAWENTO	(Reg. UE	2010/2201)						
Refrigerazione d'ambiente Prated.c	(10)	kW	_	_	_				
SEER	(10)(11)	KVV							
tendimento ns	(10)(11)	%							
FFICIENZA STAGIONALE IN RISCALDA	. ,, ,								
PDesign	(4)	keg. ue o kW	227	252	319	294	390	356	378
SCOP	(4)(13)	KVV.	3.67	3.71	3.78	3.67	3,80	3.73	3.72
Rendimento ns	(4)(14)	%	144	145	148	144	149	146	146
Classe di efficienza stagionale	(15)	70	-	-	-	- 177	-	-	-
CAMBIATORI	(13)			-	-		-	<u>-</u>	
CAMBIATORE UTENZA IN REFRIGERA	ZIONE								
OCAMBIATURE UTENZA IN REFRIGERA Portata	(1)	1/-	15.13	16.11	47.70	40.50	04.00	00.07	04.00
Perdita di carico allo scambiatore	(1)	l/s kPa	43.0	34.6	17,72 41.9	19,58 39.2	21,23 46.2	23,27 38.6	24,20 41.8
	. ,	кРа	43,0	34,0	41,9	39,2	40,2	30,0	41,0
SCAMBIATORE UTENZA IN RISCALDAN Portata	(3)	l/s	17.47	18.30	20.28	22.73	24.67	26.65	27.46
ਾਰਾਹਰ Perdita di carico allo scambiatore	(3)	kPa	57,4	44,7	20,28 54,9	52,73	62,3	50,65	53,7
	(3)	KPa	57,4	44,7	54,9	52,9	02,3	50,0	55,7
CIRCUITO FRIGORIFERO		N°	4	4	4	6	6	6	6
I. compressori		N°	2	2	2	<u>6</u> 3	6 3	<u>6</u> 3	6 3
I. circuiti Carica refrigerante teorica			71.9	74.1	85.2	96.3	106	112	113
		kg	7 1,9	14,1	00,2	90,3	100	112	113
IVELLI SONORI	(E)	4D/A)	60	60	60	60	60	60	60
ressione sonora totale	(5)	dB(A)	68	68	68	68	68	69	69
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	88 89	88 89	88 89	89 90	89 90	90 91	90 91
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	09	69	69	90	90	91	91
DIMENSIONI E PESI	(0)		2222	0.400	2022	40.40	4750	5050	F170
Peso in funzionamento	(9)	kg	3330	3460	3630	4640	4750	5050	5170
A	(9)	mm	4515	5080	5080	5690	5690	6865	7430
3	(9)	mm	2260	2260	2260	2260	2260	2260	2260 2450
H	(9)	mm	2450	2450	2450	2450	2450	2450	245

Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511
 Acqua scambiatore caido lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

NX2-N-G06 / A			0344	0364	0404	0446	0506	0526
limentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
RESTAZIONI		·						
REFRIGERAZIONE (GROSS VALUE)								
otenza frigorifera	(1)	kW	345.3	361.5	399.8	446.5	500.0	525.8
otenza assorbita totale	(1)	kW	116,8	121.4	133.4	152.0	168.8	177.0
ER	(1)	kW/kW	2,956	2.978	2.997	2.938	2.962	2.971
REFRIGERAZIONE (EN14511 VALUE)	. ,		_,	_,_,_	_,-,	_,-,	_,-,	_,-,-
otenza frigorifera	(1)(2)	kW	344.9	361.1	399.3	446.0	499.5	525.3
ER	(1)(2)	kW/kW	2,920	2,950	2,960	2,900	2,920	2,940
Classe EUROVENT	(-/(-/	1000/1000	-	-	-	-	-	-
ISCALDAMENTO (GROSS VALUE)								
otenza termica totale	(3)	kW	376.3	397.2	426.7	492.5	531.0	573.6
otenza assorbita totale	(3)	kW	116,4	123,0	131,8	153,1	164,1	177,1
OP	(3)	kW/kW	3,233	3,229	3,237	3,217	3,236	3,239
ISCALDAMENTO (EN14511 VALUE)	(0)	KVV/KVV	3,233	5,225	5,251	5,217	3,230	3,233
otenza termica totale	(3)(2)	kW	376.8	397.7	427.2	493.1	531.6	574.2
OP	(3)(2)	kW/kW	3,190	3,190	3,200	3,170	3,190	3,200
lasse EUROVENT	(3)(2)	KVV/KVV	3,180	3, 190	3,200	3,170	3,190	3,200
FFICIENZA ENERGETICA								
	DAMENTO	(Dan 115	0040/0004\					
FFICIENZA STAGIONALE IN RAFFRED	DAMENIO	(Reg. UE	2016/2281)					
efrigerazione d'ambiente								
rated,c	(10)	kW	-	-	-	-	-	-
EER	(10)(11)		-	-	-	-	-	-
endimento ηs	(10)(12)	%	-	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA								
Design	(4)	kW	271	296	321	368	386	356
COP	(4)(13)		3,76	3,83	3,79	3,90	3,81	3,80
endimento ηs	(4)(14)	%	147	150	149	153	149	149
lasse di efficienza stagionale	(15)		-	-	-	-	-	-
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA	ZIONE							
ortata	(1)	l/s	16,51	17,29	19,12	21,35	23,91	25,14
erdita di carico allo scambiatore	(1)	kPa	51,2	39,9	48,8	46,7	58,5	45,1
CAMBIATORE UTENZA IN RISCALDAN	MENTO							
ortata	(3)	l/s	18,17	19,17	20,60	23,77	25,63	27,69
erdita di carico allo scambiatore	(3)	kPa	62,0	49,1	56,6	57,9	67,3	54,6
IRCUITO FRIGORIFERO								
. compressori		N°	4	4	4	6	6	6
. circuiti		N°	2	2	2	3	3	3
arica refrigerante teorica		kg	81,0	86,4	86,9	109	112	124
IVELLI SONORI			,-		,			
ressione sonora totale	(5)	dB(A)	77	77	77	76	77	77
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	97	97	97	97	98	98
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	97	97	97	97	98	98
IMENSIONI E PESI	(-/(-/	~_(· .)	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
eso in funzionamento	(9)	kg	3350	3440	3480	4650	4900	5060
eso in funzionamento	(9)	mm	5080	5080	5080	6255	7430	7430
<u> </u>	(9)	mm	2260	2260	2260	2260	2260	2260

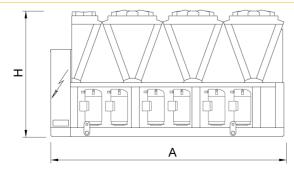
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511 1
- 2
- Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

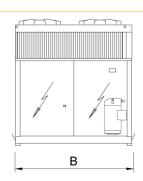
- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

POMPE DI CALORE **NX2-N-G06**

0344 - 0808 316,4-799,2 kW

NX2-N-G06 / A			0546	0606	0708	0738	0768	8080
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	543.5	599.3	696.6	724.8	762.0	799.2
Potenza assorbita totale	(1)	kW	182.1	196,5	228.7	238.0	248.8	262.0
EER	(1)	kW/kW	2,985	3,050	3,046	3,045	3,063	3,050
REFRIGERAZIONE (EN14511 VALUE)	. ,		_,	-,,,,,	-,,,,,	-,	-,	-,
Potenza frigorifera	(1)(2)	kW	543.0	598.8	696.0	724.2	761,4	798,6
EER	(1)(2)	kW/kW	2,950	3,010	3,010	3.010	3,030	3.020
Classe EUROVENT	(-/(=/	10071000	-	-	-	-	-	
RISCALDAMENTO (GROSS VALUE)								
Potenza termica totale	(3)	kW	596.0	640.0	752.7	794.7	825.4	853.3
Potenza assorbita totale	(3)	kW	184,0	193.6	227,6	239,7	250,1	258,1
COP	(3)	kW/kW	3.239	3.306	3.307	3.315	3.300	3.306
RISCALDAMENTO (EN14511 VALUE)	(0)	IV V / IV V V	3,235	3,300	3,307	3,313	3,300	3,300
Potenza termica totale	(3)(2)	kW	596,6	640,6	753,4	795,3	826,0	854,1
COP	(3)(2)	kW/kW	3,200	3,260	3,260	3,280	3,260	3,260
Classe EUROVENT	(3)(2)	KVV/KVV	3,200	3,200	3,200	3,200	3,200	3,260
EFFICIENZA ENERGETICA								
EFFICIENZA STAGIONALE IN RAFFREDI	DAMENTO	(Reg. UE	2016/2281)					
Refrigerazione d'ambiente								
Prated,c	(10)	kW	-	599	696	724	761	799
SEER	(10)(11)		-	4,56	4,56	4,56	4,58	4,56
Rendimento ηs	(10)(12)	%	-	180	179	180	180	179
EFFICIENZA STAGIONALE IN RISCALDA			13/2013)					
PDesign	(4)	kW	371	-	-	-	-	-
SCOP	(4)(13)		3,83	-	-	-	-	-
Rendimento ηs	(4)(14)	%	150	-	-	-	-	-
Classe di efficienza stagionale	(15)		-	-	-	-	-	-
SCAMBIATORI								
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE							
Portata	(1)	l/s	25,99	28,66	33,31	34,66	36,44	38,22
Perdita di carico allo scambiatore	(1)	kPa	48,2	51,1	50,3	40,5	44,7	49,2
SCAMBIATORE UTENZA IN RISCALDAM	ENTO							
Portata	(3)	l/s	28,77	30,89	36,34	38,36	39,84	41,19
Perdita di carico allo scambiatore	(3)	kPa	59,0	59,4	59,9	49,6	53,5	57,2
CIRCUITO FRIGORIFERO								
N. compressori		N°	6	6	8	8	8	8
V. circuiti		N°	3	3	4	4	4	4
Carica refrigerante teorica		kg	133	133	162	173	174	176
IVELLI SONORI		9						
Pressione sonora totale	(5)	dB(A)	77	78	77	78	78	78
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	98	99	99	100	100	100
Potenza sonora totale in riscaldamento	(6)(8)	dB(A)	98	0	0	0	0	0
DIMENSIONI E PESI	\~/\ - /	~(, t)				<u> </u>		
Peso in funzionamento	(9)	kg	5140	5200	6580	6760	6800	6840
		mm	7430	7430	9780	9780	9780	9780
Λ								
A	(9) (9)	mm	2260	2260	2260	2260	2260	2260


Note


- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511
- 2 valori nieriu alia normativa En 14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione de descuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R454B [GWP₁₀₀ 466] ad effetto serra Dati certificati in EUROVENT

Disegno dimensionale

FOCS-N-G05

2022 - 2622 440.7-586.0 kW

Unità da esterno in pompa di calore per la produzione di acqua refrigerata/riscaldata con compressori a vite di tipo semiermetico dedicati per l'utilizzo di R513A, ventilatori elicoidali, batteria di scambio termico con tubi in rame e alette in alluminio, scambiatore a fascio tubiero a struttura asimmetrica di progettazione Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A. e valvola di espansione elettronica.

Basamento, struttura e pannellatura in lamiera di acciaio zincata verniciata con polveri poliesteri.

Sono unità dedicate ad impianti a due tubi, in grado di produrre acqua calda o fredda in funzione del modo impostato; l'accurata termoregolazione garantisce un ottimale soddisfacimento dei carichi al variare delle condizioni al contorno.

Comando

Controllore elettronico W3000TE

W3000TE presenta una tastiera di ampio formato e display LCD per un facile e sicuro accesso alle impostazioni della macchina. Il menu multi-livello con lingua selezionabile e icone led permette di visualizzare le condizioni di funzionamento dei vari componenti. Come opzione è disponibile un'interfaccia touch con display a colori 7", retro illuminazione regolabile a led e porta USB. La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC).

Per sistemi a più unità è possibile la regolazione delle risorse con dispositivi proprietari opzionali. Può inoltre essere attuata la contabilizzazione dei consumi/prestazioni. La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet. La termoregolazione si caratterizza per la modulazione continua della capacità, basata su algoritmi PID e riferita alla temperatura di mandata dell'acqua.

Refrigerante

Versioni

B Base SL-CA Super-silenziata in classe A CA Classe A di efficienza

LN-CA Low Noise, Classe A di

Configurazioni

- Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

ELEVATA EFFICIENZA

Unità in Classe A secondo Eurovent (in riscaldamento). Elevata efficienza che si traduce in consumi energetici ridotti durante tutto il periodo di funzionamento.

REFRIGERANTE A BASSO GWP

Refrigerante R513A, caratterizzato da effetto serra ridotto (GWP R513A = 572, GWP R134a = 1300 secondo IPCC) e zero impatto sullo strato di ozono. Non infiammabile (ASHRAE 34, ISO 817: classe A1).

SMART DEFROST

Le evolute logiche proprietarie di sbrinamento auto-adattive tengono in considerazione tutti i parametri operativi e le condizioni esterne: il numero e la durata dei cicli di sbrinamento sono dunque ridotti al minimo necessario garantendo un incremento dell'efficienza e della potenza termica resa dalle unità.

COMPATTEZZA

Dimensioni ridotte, per la facilità d'installazione anche in siti con vincoli d'ingombro

ESTESO CAMPO DI FUNZIONAMENTO

Funzionamento garantito con temperature aria esterna fino a -10 °C durante la stagione invernale e fino a 50 °C nella stagione estiva.

FORNITURA DI ACQUA CALDA

Fornitura di acqua calda in utilizzo fino a 60°C, per la massima versatilità rispetto alle soluzioni impiantistiche adottate

Accessori

- Gruppo pompe
- Pacchetto VPF: gruppo pompe a portata variabile con regolazione integrata a bordo unità
- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet
- Kit HWT, High Water Temperature, per la produzione di acqua calda fino a 60°C
- Soft start

FOCS-N-G05/B			2022	2222	2422	
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	
PRESTAZIONI						
REFRIGERAZIONE (GROSS VALUE)						
Potenza frigorifera	(1)	kW	449.7	494.0	530.9	
Potenza assorbita totale	(1)	kW	169,5	184.1	193.9	
EER	(1)	kW/kW	2.653	2.683	2.738	
REFRIGERAZIONE (EN14511 VALUE)		,	2,000	2,000	2,. 00	
Potenza frigorifera	(1)(2)	kW	448,5	492,6	529,3	
EER	(1)(2)	kW/kW	2,630	2,660	2,710	
Classe EUROVENT	(- //-/	1000/1000	-	-	-	
RISCALDAMENTO (GROSS VALUE)						
Potenza termica totale	(3)	kW	483.4	528.9	568.2	
Potenza assorbita totale	(3)	kW	158.4	172.5	185.0	
COP	(3)	kW/kW	3,052	3,066	3,071	
RISCALDAMENTO (EN14511 VALUE)			-,	-,	-,	
Potenza termica totale	(3)(2)	kW	484,8	530,6	570,2	
COP	(3)(2)	kW/kW	3,030	3,050	3,050	
Classe EUROVENT	\-\(\frac{1}{2}\)\(\frac{1}{2}\)		2,200	2,300	2,200	
EFFICIENZA ENERGETICA						
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UF	2016/2281)			
Refrigerazione d'ambiente		(og. or				
Prated,c	(10)	kW	_	_	_	
SEER	(10)(11)	17.4.4				
Rendimento ns	(10)(12)	%	-	-	-	
EFFICIENZA STAGIONALE IN RISCALDA	. ,. ,		13/2013)			
PDesign	(4)	kW	339	366	400	
SCOP	(4)(13)		3.19	3.20	3.19	
Rendimento ns	(4)(14)	%	125	125	125	
Classe di efficienza stagionale	(15)		-	-	-	
SCAMBIATORI	· , ,					
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE					
Portata	(1)	l/s	21,50	23,62	25,39	
Perdita di carico allo scambiatore	(1)	kPa	30.0	33.3	38.4	
SCAMBIATORE UTENZA IN RISCALDAN	. ,		,-	,-	, .	
Portata	(3)	l/s	23.33	25.53	27.43	
Perdita di carico allo scambiatore	(3)	kPa	35,3	38,9	44,8	
CIRCUITO FRIGORIFERO			,-	,-	,-	
N. compressori		N°	2	2	2	
V. circuiti		N°	2	2	2	
Carica refrigerante teorica		kg	184	213	230	
LIVELLI SONORI						
Pressione sonora totale	(5)	dB(A)	79	80	80	
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	99	101	101	
Potenza sonora totale in riscaldamento	(6)(8)	dB(A)	99	101	101	
DIMENSIONI E PESI	(-/(-/	~_(, ,)				
Peso in funzionamento	(9)	kg	5900	6330	6420	
A	(9)	mm	4900	5800	5800	
В	(9)	mm	2260	2260	2260	
H	(9)	mm	2430	2430	2430	
	. ,					

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511 1
- 2 Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

POMPE DI CALORE CS-N-G05

2022 - 2622 440,7-586,0 kW

FOCS-N-G05/CA			2022	2222	2422	2622	
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	
PRESTAZIONI		·					
REFRIGERAZIONE (GROSS VALUE)							
Potenza frigorifera	(1)	kW	459.6	502.8	537.8	586.0	
Potenza assorbita totale	(1)	kW	164,0	176.2	188.1	209.6	
EER	(1)	kW/kW	2.802	2.854	2.859	2.796	
REFRIGERAZIONE (EN14511 VALUE)	(-)	100071000	2,002	2,001	2,000	2,700	
Potenza frigorifera	(1)(2)	kW	458,4	501,4	536,1	584,7	
ER	(1)(2)	kW/kW	2,770	2,820	2,820	2,770	
lasse EUROVENT	(1)(2)	KVV/KVV	2,770	2,020	2,020	2,770	
ISCALDAMENTO (GROSS VALUE)							
Potenza termica totale	(3)	kW	474.9	525.3	558.7	595.6	
Potenza assorbita totale	(3)	kW	149.3	162.5	174.2	184,5	
OP	(3)	kW/kW	3,181	3,233	3,207	3,228	
	(0)	INVV/INVV	3, 10 1	3,233	3,201	3,220	
ISCALDAMENTO (EN14511 VALUE) otenza termica totale	(3)(2)	kW	476,3	526,9	560,6	597,0	
COP			3.160	,	3.180		
Classe EUROVENT	(3)(2)	kW/kW	3,100	3,210	3,100	3,210	
FFICIENZA ENERGETICA	D 4 ME	(D	0040/000				
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)				
efrigerazione d'ambiente	/						
rated,c	(10)	kW	-	-	-	-	
ER .	(10)(11)		-	-	-	-	
endimento ηs	(10)(12)	%	-	-	-	-	
FFICIENZA STAGIONALE IN RISCALDA							
Design	(4)	kW	342	372	361	393	
COP	(4)(13)		3,38	3,41	3,38	3,56	
endimento ηs	(4)(14)	%	132	133	132	139	
lasse di efficienza stagionale	(15)		-	-	-	-	
CAMBIATORI							
CAMBIATORE UTENZA IN REFRIGERA	ZIONE						
ortata	(1)	l/s	21,98	24,05	25,72	28,02	
erdita di carico allo scambiatore	(1)	kPa	31,3	34,5	39,4	26,5	
CAMBIATORE UTENZA IN RISCALDAN	IENTO						
ortata	(3)	l/s	22,92	25,36	26,97	28,75	
erdita di carico allo scambiatore	(3)	kPa	34,1	38,3	43,4	27,9	
IRCUITO FRIGORIFERO							
. compressori		N°	2	2	2	2	
. circuiti		N°	2	2	2	2	
arica refrigerante teorica		kg	233	256	253	276	
IVELLI SONORI							
ressione sonora totale	(5)	dB(A)	79	80	80	80	
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	99	101	101	101	
otenza sonora totale in riscaldamento	(6)(8)	dB(A)	99	101	101	101	
IMENSIONI E PESI							
eso in funzionamento	(9)	kg	6050	6630	6710	6950	
	(9)	mm	4900	5800	5800	5800	
3	(9)	mm	2260	2260	2260	2260	
1	(9)	mm	2430	2430	2430	2430	

Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511
 Acqua scambiatore caido lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

FOCS-N-G05/LN-CA			2022	2222	2422	2622
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI						
REFRIGERAZIONE (GROSS VALUE)						
Potenza frigorifera	(1)	kW	444.3	492.0	524.2	564.0
Potenza assorbita totale	(1)	kW	166,8	176.3	189.9	214.0
EER	(1)	kW/kW	2.664	2.791	2.760	2.636
REFRIGERAZIONE (EN14511 VALUE)			,	, -	,	,
Potenza frigorifera	(1)(2)	kW	443,2	490,6	522,6	562,8
EER	(1)(2)	kW/kW	2,640	2,760	2,730	2,620
Classe EUROVENT	()()		-,	-,	-,	-,
RISCALDAMENTO (GROSS VALUE)						
Potenza termica totale	(3)	kW	471.6	525.3	558.7	591.5
Potenza assorbita totale	(3)	kW	149.3	162.5	174.2	184.5
COP	(3)	kW/kW	3,159	3,233	3,207	3,206
RISCALDAMENTO (EN14511 VALUE)	` '		-,	-,	-,	-,
Potenza termica totale	(3)(2)	kW	472,9	526,9	560,6	592,9
COP	(3)(2)	kW/kW	3.140	3,210	3,180	3,190
Classe EUROVENT	(-/(-/		0,	0,2.0	0,.00	0,.00
FFICIENZA ENERGETICA						
EFFICIENZA STAGIONALE IN RAFFREDI	DAMENTO	(Reg UF	2016/2281)			
Refrigerazione d'ambiente		(cg. OL				
Prated,c	(10)	kW	_	_	_	_
SEER	(10)(11)	17.4.4				
Rendimento ns	(10)(11)	%	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA	. ,, ,					
PDesign	(4)	kW	340	372	361	391
SCOP	(4)(13)	11.4.4	3.36	3.41	3.38	3.53
Rendimento ns	(4)(14)	%	131	133	132	138
Classe di efficienza stagionale	(15)		-	-	-	-
SCAMBIATORI	/					
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE					
Portata	(1)	l/s	21,25	23,53	25,07	26,97
Perdita di carico allo scambiatore	(1)	kPa	29.3	33.0	37.5	24.5
SCAMBIATORE UTENZA IN RISCALDAM	. ,		,-	,-	,-	,-
Portata	(3)	l/s	22.77	25.36	26.97	28.55
Perdita di carico allo scambiatore	(3)	kPa	33,6	38,3	43,4	27,5
CIRCUITO FRIGORIFERO	. ,			,-	.,,	.,-
N. compressori		N°	2	2	2	2
N. circuiti		N°	2	2	2	2
Carica refrigerante teorica		kg	242	267	284	306
LIVELLI SONORI						
Pressione sonora totale	(5)	dB(A)	73	74	74	74
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	93	95	95	95
Potenza sonora totale in riscaldamento	(6)(8)	dB(A)	94	96	96	96
DIMENSIONI E PESI	,	` ′				
Peso in funzionamento	(9)	kg	6120	6610	6700	6930
A	(9)	mm	4900	5800	5800	5800
В	(9)	mm	2260	2260	2260	2260
H	(9)	mm	2430	2430	2430	2430

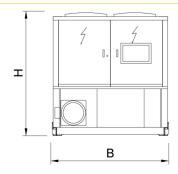
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511 1
- 2 Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

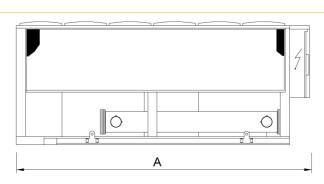
- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

POMPE DI CALORE CS-N-G05

2022 - 2622 440,7-586,0 kW

FOCS-N-G05/SL-CA			2022	2222	2422	2622
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI						
REFRIGERAZIONE (GROSS VALUE)						
Potenza frigorifera	(1)	kW	440.7	487,9	519.6	558.6
Potenza assorbita totale	(1)	kW	169.4	178.7	192.6	217,5
EER	(1)	kW/kW	2,602	2,730	2,698	2,568
REFRIGERAZIONE (EN14511 VALUE)	(1)	KVV/KVV	2,002	2,730	2,090	2,300
	(1)(2)	kW	439.6	486.6	518.0	557.4
Potenza frigorifera EER	. , . ,		,-	, -	,-	,
==:::	(1)(2)	kW/kW	2,580	2,700	2,670	2,550
Classe EUROVENT			-	-	-	-
RISCALDAMENTO (GROSS VALUE)	(0)		405.0	540.0	== 4.0	500.0
Potenza termica totale	(3)	kW	465,6	519,6	551,8	583,9
Potenza assorbita totale	(3)	kW	147,7	160,8	172,4	182,6
COP	(3)	kW/kW	3,152	3,231	3,201	3,198
RISCALDAMENTO (EN14511 VALUE)						
Potenza termica totale	(3)(2)	kW	466,9	521,2	553,7	585,2
COP	(3)(2)	kW/kW	3,130	3,210	3,180	3,180
Classe EUROVENT						
EFFICIENZA ENERGETICA						
EFFICIENZA STAGIONALE IN RAFFREDD	AMENTO	(Reg. UE	2016/2281)			
Refrigerazione d'ambiente		, ., .				
Prated.c	(10)	kW	-	_	_	_
SEER	(10)(11)		-	-	-	_
Rendimento ns	(10)(12)	%	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA	. ,, ,		13/2013)			
PDesign	(4)	kW	340	371	365	393
SCOP	(4)(13)	17.4.4	3.39	3.44	3.41	3,56
Rendimento ns	(4)(14)	%	132	135	134	139
Classe di efficienza stagionale	(15)	70	-	-	-	-
SCAMBIATORI	(10)					
SCAMBIATORI SCAMBIATORE UTENZA IN REFRIGERAZ	ZIONE					
SCAMBIATORE UTENZA IN REFRIGERAZ Portata	(1)	l/s	21.08	23.33	24.85	26.71
· ortata	(1)	., -		32,5		
Perdita di carico allo scambiatore		kPa	28,8	32,5	36,8	24,0
SCAMBIATORE UTENZA IN RISCALDAMI		1/c	22.47	25.00	26.64	20.40
Portata	(3)	l/s	22,47	25,08	26,64	28,18
Perdita di carico allo scambiatore	(3)	kPa	32,7	37,5	42,3	26,8
CIRCUITO FRIGORIFERO		NIO.				_
N. compressori		N°	2	2	2	2
N. circuiti		N°	2	2	2	2
Carica refrigerante teorica		kg	243	268	285	307
LIVELLI SONORI						
Pressione sonora totale	(5)	dB(A)	69	70	70	70
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	89	91	91	91
Potenza sonora totale in riscaldamento	(6)(8)	dB(A)	90	92	92	92
DIMENSIONI E PESI						
	(9)	kg	6190	6680	6770	7010
Peso in funzionamento						
Peso in funzionamento A	(9)	mm	4900	5800	5800	5800
		mm mm	4900 2260	5800 2260	5800 2260	5800 2260


Note


- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511 2
- valori nieriu alia normativa En 14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione de descuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R513A [GWP₁₀₀ 631] ad effetto serra Dati certificati in EUROVENT

Disegno dimensionale

Unità da interno in pompa di calore per la produzione di acqua refrigerata/riscaldata con compressori ermetici rotativi di tipo Scroll, ventilatori centrifughi plug fan con motore EC, scambiatore a piastre saldo-brasate e valvola di espansione termostatica.

Struttura costituita da elementi portanti e pannelli di tamponamento estetici realizzati in lamiera di acciaio zincato a caldo di adeguato spessore e verniciati con polveri poliesteri RAL 7035. Le pannellature sono facilmente rimovibili per una facile e rapida accessibilità ai componenti interni da ogni lato dell'unità.

La gamma comprende le versioni a due compressori monocircuito e le versioni con quattro compressori suddivisi in due circuiti.

Comando

Controllore elettronico W3000TE

Il controllore presenta evolute logiche proprietarie e una tastiera Compact per la regolazione dei parametri mediante menu multi-livello con lingua selezionabile. Come opzione è disponibile (in sostituzione o in aggiunta alla tastiera) KIPlink, l'innovativa interfaccia utente basata su tecnologia WiFi che permette di gestire l'unità direttamente da smartphone e tablet. La termoregolazione si basa sull'esclusivo algoritmo Quick-Mind, dotato di logiche autoadattative, utili nei sistemi con ridotto contenuto d'acqua. In alternativa sono impostabili regolazioni proporzionale o proporzionale-integrale. diagnostica comprende una completa gestione degli allarmi, con le funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC). Per sistemi a più unità è possibile gestire le risorse tramite dispositivi proprietari opzionali. Inoltre può essere attuata la contabilizzazione dei consumi e delle prestazioni. L'orologio integrato permette di creare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia e per la gestione dei cicli anti-legionella. La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks.

Una dedicata tastiera per installazione a muro assicura il controllo remoto di tutte le funzioni. Come opzione (pacchetto VPF), viene integrata la modulazione della capacità con la regolazione della portata idraulica, tramite pompe inverter e risorse dedicate per il circuito idraulico.

Refrigerante

Versioni

K Efficienza standard
SL-K Super silenziata, efficienza standard

A Alta efficienza

Configurazioni

- Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

ELEVATA EFFICIENZA

Elevata efficienza a carico pieno e parziale, ai migliori livelli di mercato. Queste unità garantiscono bassi costi di esercizio e quindi un rapido ritorno dell'investimento.

ErP READY

Le elevatissime efficienze ai carichi parziali consentono di soddisfare e superare le efficienze stagionali per il riscaldamento SCOP definite dalle direttive per la progettazione ecosostenibile.

VENTILATORE PLUG FAN CON MOTORE EC A COMMUTAZIONE ELETTRONICA

Risparmio energetico grazie alla massima efficienza del ventilatore Plug fan in qualsiasi punto di lavoro. Il ventilatore è direttamente collegato al motore, senza alcuna perdita di efficienza nel caso di trasmissione a cinghie e pulegge.

Motore EC dotato di magneti permanenti. Elevata efficienza anche a portata parziale, grazie alla mancanza di spazzole, e di un minor consumo in ogni condizione di lavoro al fine di ottenere una migliore efficienza stagionale secondo la direttiva ErP.

COMPLETA VERSATILITA

Mandata dell'aria orizzontale o verticale

MODULO IDRONICO INTEGRATO

L'opzione modulo idronico integrato racchiude in sé i principali componenti idraulici; è disponibile in diverse configurazioni con pompa in-line singola o gemellare, ad alta o bassa prevalenza, a velocità fissa o variabile.

Accessori

- Avviatori "Soft-start"
- Predisposizione connettività remota con schede protocollo ModBus, Echelon, Bacnet, Bacnet over-IP.
- Sonda aria esterna per compensazione setpoint acqua impianto
- Mandata dell'aria orizzontale o verticale
- Modulo idronico disponibile in diverse configurazioni con 1 o 2 pompe a velocità fissa o variale, alta o bassa prevalenza.
- Sistema VPF (Variable Primary Flow)
- Valvola termostatica elettronica

NX-CN /K			0072	0092	0102	0122	0152	0182	0202	0232
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI										
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	18,37	22,60	25,76	30,34	37,95	44,87	51,74	57,71
Potenza assorbita totale	(1)	kW	6.460	8.540	9.050	10,78	13,33	15,22	18.06	20.75
EER	(1)	kW/kW	2,848	2.646	2,851	2,806	2.857	2,954	2,856	2,774
REFRIGERAZIONE (EN14511 VALUE)	(- /	1000/1000	2,010	2,010	2,001	2,000	2,007	2,001	2,000	_,,,,,
Potenza frigorifera	(1)(2)	kW	18.30	22.60	25.70	30,30	37.90	44.80	51.70	57.60
EER	(1)(2)	kW/kW	3,040	2,810	3,090	3,010	3,060	3,190	3,060	2,950
Classe EUROVENT	(1)(2)	KVV/KVV	3,040	2,010	3,090	3,010	3,000	3,190	3,000	2,950
RISCALDAMENTO (GROSS VALUE)	(2)	1.1.1/	40.40	00.07	00.00	24.70	44.40	40.44	FF C4	C4 74
Potenza termica totale	(3)	kW	19,16	23,87	28,02	31,79	41,48	48,41	55,64	61,74
Potenza assorbita totale	(3)	kW	7,059	9,064	9,870	11,27	14,30	16,37	18,97	21,50
COP	(3)	kW/kW	2,720	2,638	2,837	2,814	2,902	2,951	2,926	2,870
RISCALDAMENTO (EN14511 VALUE)										
Potenza termica totale	(3)(2)	kW	19,20	23,90	28,10	31,90	41,60	48,50	55,70	61,80
COP	(3)(2)	kW/kW	2,900	2,800	3,060	3,010	3,110	3,180	3,120	3,040
Classe EUROVENT										
EFFICIENZA ENERGETICA										
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente		, , ,		,						
Prated.c	(10)	kW	_	_	_	_	_	_	_	_
SEER	(10)(11)	17.4.4								
Rendimento ns	(10)(11)	%								
EFFICIENZA STAGIONALE IN RISCALDA	. ,. ,		42/2042\							
PDesign	(4)	kW kW	13.7	16.9	20.2	23.1	30.3	35.4	40.7	45.3
SCOP	(4)(13)	KVV	- /	- , -	- /	- /	, -	/	- /	-,-
		%	3,77	3,73	4,16	4,15	3,89	3,93	3,89	3,91
Rendimento ηs	(4)(14)	70	148 A+	146	164 A++	163 A++	153 A++	154	153 A++	153
Classe di efficienza stagionale	(15)		A+	A+	A++	A++	A++	A++	A++	A++
SCAMBIATORI										
SCAMBIATORE UTENZA IN REFRIGERA										
Portata	(1)	l/s	0,878	1,081	1,232	1,451	1,815	2,146	2,474	2,760
Perdita di carico allo scambiatore	(1)	kPa	16,7	18,2	16,6	18,3	19,1	16,6	17,3	17,1
SCAMBIATORE UTENZA IN RISCALDAN	MENTO									
Portata	(3)	l/s	0,925	1,152	1,352	1,535	2,002	2,337	2,686	2,980
Perdita di carico allo scambiatore	(3)	kPa	18,6	20,7	20,1	20,4	23,2	19,6	20,4	19,9
CIRCUITO FRIGORIFERO										
N. compressori		N°	2	2	2	2	2	2	2	2
N. circuiti		N°	1	1	1	1	1	1	1	1
Carica refrigerante teorica		kg	8,20	8,50	8,90	9,10	19,0	20,2	21,1	21,5
VENTILATORI			-,			-,	, .			
Portata d' aria nominale		m³/s	2,08	2,50	3,33	3.47	4.44	5,42	5.69	5.97
Prevalenza statica utile nominale		Pa	120	120	120	120	120	120	120	120
		га	120	120	120	120	120	120	120	120
LIVELLI SONORI	(E)(G)(4G)	dD/A)	00	00	70	70	00	0.E	96	0.7
Potenza sonora totale in refrigerazione Potenza sonora in riscaldamento	(5)(6)(16)	dB(A)	83 70	88 70	78 70	79 70	88 80	85 80	86 80	87 80
	(5)(7)(16)	dB(A)								
Potenza sonora totale in riscaldamento	(5)(8)(16)	dB(A)	83	88	78	79	88	85	86	87
DIMENSIONI E PESI										
A	(9)	mm	1500	1500	1500	1500	2480	2480	2480	2480
В	(9)	mm	900	900	900	900	1100	1100	1100	1100
H	(9)	mm	1910	1910	1910	1910	2100	2100	2100	2100
Peso in funzionamento	(9)	kg	430	440	460	470	810	840	840	860

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C_LIR_87%
- Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora totale dei ventilatori come dichiarata dal costruttore riferita alla velocità di rotazione nominale e prevalenza statica utile nominale.
 Potenza sonora in refrigerazione, outdoors.
 Potenza sonora in riscaldamento, indoors.

- 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 16 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

0072 - 1104 18,03-265,3 kW

NX-CN /K			0272	0302	0352	0402	0452	0502	0552	0602
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI										
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	66,12	74,94	85,04	94,47	106,8	121,1	135,9	151,4
Potenza assorbita totale	(1)	kW	22,83	27.09	31.82	33.89	38.78	44.60	52.52	56.39
EER	(1)	kW/kW	2.899	2.764	2,673	2,788	2,753	2,715	2,589	2.684
REFRIGERAZIONE (EN14511 VALUE)	(1)	IX V V / IX V V	2,033	2,704	2,073	2,700	2,733	2,710	2,503	2,004
Potenza frigorifera	(1)(2)	kW	66.00	74.90	85.00	94.40	106.7	121.0	135.8	151,2
EER	(1)(2)	kW/kW	3,110	2,950	2,840	2,990	2,930	2,880	2,730	2,850
Classe EUROVENT	(1)(2)	KVV/KVV	3,110	2,950	2,040	,	,	2,000	2,730	
			-	-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)	(0)	1.147	70.70	70.40	00.05	400.0	444.0	404.4	4400	400.0
Potenza termica totale	(3)	kW	70,72	79,49	89,35	102,2	114,6	131,1	146,9	162,9
Potenza assorbita totale	(3)	kW	23,32	27,81	32,23	35,08	39,32	45,56	53,15	56,97
COP	(3)	kW/kW	3,034	2,860	2,776	2,912	2,916	2,875	2,766	2,858
RISCALDAMENTO (EN14511 VALUE)										
Potenza termica totale	(3)(2)	kW	70,80	79,60	89,50	102,3	114,7	131,2	147,1	163,1
COP	(3)(2)	kW/kW	3,260	3,050	2,950	3,110	3,100	3,050	2,920	3,030
Classe EUROVENT										
EFFICIENZA ENERGETICA										
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente				,						
Prated.c	(10)	kW	_	_	_	_	_	_	_	_
SEER	(10)(11)	1000								
Rendimento ns	(10)(12)	%								
EFFICIENZA STAGIONALE IN RISCALDA	. ,, ,		12/2012)							
PDesign	(4)	kW	51.9	58.4	65.4	74,4	83.4	95.3	107	119
SCOP	(4)(13)	KVV	4.08	3,76	3,75	3,80	3,87	3,75	3.72	3,73
Rendimento ns	(4)(13)	%	160	147	147	149	152	147	146	146
Classe di efficienza stagionale	(15)	70	A++	A+	A+	-	- 152	- 147	140	- 140
	(10)		Атт	AT	AT					
SCAMBIATORI										
SCAMBIATORE UTENZA IN REFRIGERA										
Portata	(1)	l/s	3,162	3,584	4,067	4,518	5,107	5,791	6,500	7,240
Perdita di carico allo scambiatore	(1)	kPa	12,9	12,6	13,5	13,2	13,5	13,3	14,3	14,9
SCAMBIATORE UTENZA IN RISCALDAN	//ENTO									
Portata	(3)	l/s	3,414	3,837	4,313	4,932	5,532	6,328	7,091	7,864
Perdita di carico allo scambiatore	(3)	kPa	15,1	14,4	15,2	15,7	15,8	15,9	17,0	17,6
CIRCUITO FRIGORIFERO										
N. compressori		N°	2	2	2	2	2	2	2	2
N. circuiti		N°	1	1	1	1	1	1	1	1
Carica refrigerante teorica		kg	27,1	23,6	24,6	32,2	33,0	38,9	39,9	40.8
/ENTILATORI				-,-	,-			, -	,-	-,-
Portata d' aria nominale		m³/s	7,50	8.06	8,89	10,56	11.11	12,50	13.89	15,83
Prevalenza statica utile nominale		Pa	120	120	120	120	120	120	120	120
IVELLI SONORI		ı u	120	120	120	120	120	120	120	120
Potenza sonora totale in refrigerazione	(5)(6)(16)	dB(A)	83	87	89	84	85	91	94	88
Potenza sonora totale in reingerazione Potenza sonora in riscaldamento	(5)(7)(16)	dB(A)	80	80	80	82	83	83	84	85
Potenza sonora totale in riscaldamento	(5)(8)(16)	dB(A)	83	87	89	84	85	91	94	88
DIMENSIONI E PESI	(2)									
A	(9)	mm	2480	2480	2480	2980	2980	3970	3970	3970
В	(9)	mm	1100	1100	1100	1260	1260	1260	1260	1260
H	(9)	mm	2100	2100	2100	2100	2100	2100	2100	2100
Peso in funzionamento	(9)	kg	920	960	1020	1260	1280	1510	1530	1610

Note

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Potenza sonora totale dei ventilatori come dichiarata dal costruttore riferita alla velocità di rotazione nominale e prevalenza statica utile nominale.
 Potenza sonora in refrigerazione, outdoors.

- 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 16 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

NX-CN /K			0702	0524	0604	0704	0804	0904	1004	1104
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI										
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	173,1	124,8	144,0	167,2	186,9	216,9	241,1	265,3
Potenza assorbita totale	(1)	kW	65.84	47.64	53.51	63.38	73,33	77,85	88.00	103.8
EER	(1)	kW/kW	2,631	2.622	2,692	2,637	2,550	2,788	2,740	2,556
REFRIGERAZIONE (EN14511 VALUE)	. ,		_,		_,	_,-,	_,		_,	_,
Potenza frigorifera	(1)(2)	kW	172.9	124.6	143.8	167.0	186.6	216.6	240.8	265.0
EER	(1)(2)	kW/kW	2,790	2,770	2,860	2,800	2,690	2,960	2,900	2,680
Classe EUROVENT	(- /(=/	1000/1000	-	-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)										
Potenza termica totale	(3)	kW	187,1	135,0	156,7	179,9	199,1	231,1	256,0	283,1
Potenza assorbita totale	(3)	kW	64.72	48.55	54.35	64.53	73.70	78.93	88.07	100.7
COP	(3)	kW/kW	2,892	2,784	2,881	2,789	2,701	2,929	2,906	2,811
RISCALDAMENTO (EN14511 VALUE)	(0)	IX V / IX V V	2,002	2,704	2,001	2,700	2,701	2,020	2,000	2,011
Potenza termica totale	(3)(2)	kW	187.4	135.2	156.9	180.2	199.4	231.4	256.3	283.4
COP	(3)(2)	kW/kW	3,070	2,940	3,060	2,960	2,850	3,110	3,080	2,950
Classe EUROVENT	(3)(2)	KVV/KVV	3,070	2,340	3,000	2,900	2,000	3,110	3,000	2,930
EFFICIENZA ENERGETICA										
-	DAMENTO	(D	0040/0004	,						
EFFICIENZA STAGIONALE IN RAFFRED	DAMENIO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente										
Prated,c	(10)	kW	-	-	-	-	-	-	-	-
SEER	(10)(11)		-	-	-	-	-	-	-	-
Rendimento ηs	(10)(12)	%	-	-	-	-	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA										
PDesign	(4)	kW	137	99,1	115	132	145	168	186	206
SCOP	(4)(13)		3,77	3,99	4,03	4,02	3,85	4,12	4,09	4,05
Rendimento ηs	(4)(14)	%	148	157	158	158	151	162	161	159
Classe di efficienza stagionale	(15)		-	-	-	-	-	-	-	-
SCAMBIATORI										
SCAMBIATORE UTENZA IN REFRIGERA	AZIONE									
Portata	(1)	l/s	8,277	5,966	6,887	7,998	8,935	10,37	11,53	12,69
Perdita di carico allo scambiatore	(1)	kPa	15,5	19,6	19,6	19,9	19,9	20,4	20,5	19,6
SCAMBIATORE UTENZA IN RISCALDAN	MENTO									
Portata	(3)	l/s	9,034	6,518	7,564	8,685	9,613	11,16	12,36	13,67
Perdita di carico allo scambiatore	(3)	kPa	18,5	23,4	23,7	23,5	23,0	23,5	23,5	22,8
CIRCUITO FRIGORIFERO										
N. compressori		N°	2	4	4	4	4	4	4	4
N. circuiti		N°	1	2	2	2	2	2	2	2
Carica refrigerante teorica		kg	51,4	43,0	44,3	51,5	53,5	68,5	71,0	72,8
VENTILATORI										
Portata d' aria nominale		m³/s	18,06	13.06	15,28	17.78	19.44	22,50	24.17	24,17
Prevalenza statica utile nominale		Pa	120	120	120	120	120	120	120	120
LIVELLI SONORI		. u			.20		.20		0	
Potenza sonora totale in refrigerazione	(5)(6)(16)	dB(A)	92	92	87	94	94	88	90	90
Potenza sonora in riscaldamento	(5)(7)(16)	dB(A)	85	85	85	86	86	88	90	90
Potenza sonora totale in riscaldamento	(5)(8)(16)	dB(A)	92	92	87	94	94	88	90	90
DIMENSIONI E PESI	(5)(5)(10)	UD(A)	- J_	52	07	J-T	J-T		30	30
A	(9)	mm	4670	3970	3970	4670	4670	5670	5670	5670
В	(9)	mm mm	1260	1260	1260	1260	1260	1260	1260	1260
<u>В</u> Н	(9)									
Peso in funzionamento	(9)	mm	2100 1820	2100 1490	2100 1590	2100 1910	2100 2060	2100 2430	2100 2490	2100 2540
r eso in iunzionamento	(8)	kg	1020	1490	1590	1910	2000	2430	2490	2040

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C_LLR_87%
- Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora totale dei ventilatori come dichiarata dal costruttore riferita alla velocità di rotazione nominale e prevalenza statica utile nominale.
 Potenza sonora in refrigerazione, outdoors.
 Potenza sonora in riscaldamento, indoors.

- 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 16 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

0072 - 1104 18,03-265,3 kW

NX-CN /SL-K			0072	0092	0102	0122	0152	0182	0202	0232
limentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/5
PRESTAZIONI										
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	18,03	22.02	24,45	28,64	37,03	43,88	50.75	56,21
Potenza assorbita totale	(1)	kW	6,240	8.120	9,570	11,41	12,83	14,68	17,48	20,06
ER	(1)	kW/kW	2.885	2.709	2,560	2.509	2,891	2.986	2,903	2.796
REFRIGERAZIONE (EN14511 VALUE)	(.,	IX V / IX V V	2,000	2,700	2,000	2,000	2,001	2,000	2,000	2,700
Potenza frigorifera	(1)(2)	kW	18.00	22.00	24.40	28.60	37.00	43.80	50.70	56.10
ER	(1)(2)	kW/kW	3.100	2.880	2.700	2.630	3,080	3,210	3.100	2,970
Classe EUROVENT	(1)(2)	KVV/KVV	3,100	2,000	2,700	2,030	3,000	3,210	3,100	2,970
RISCALDAMENTO (GROSS VALUE) Potenza termica totale	(3)	kW	18.92	23.48	27.08	30.78	40.70	47.57	54.82	60.97
	٠,		- , -	,	,	, -	,	, -	- ,-	, -
Potenza assorbita totale	(3)	kW	6,643	8,291	9,495	10,83	13,30	15,29	17,82	20,20
COP	(3)	kW/kW	2,846	2,835	2,856	2,852	3,060	3,111	3,079	3,020
RISCALDAMENTO (EN14511 VALUE)	(0)(0)		10.00	00.50	07.40	00.00	40.00	47.00	= 4.00	04.40
Potenza termica totale	(3)(2)	kW	19,00	23,50	27,10	30,80	40,80	47,60	54,90	61,10
COP	(3)(2)	kW/kW	3,050	3,010	3,020	3,010	3,260	3,340	3,290	3,210
Classe EUROVENT										
FFICIENZA ENERGETICA										
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente										
Prated,c	(10)	kW	-	-	-	-	-	-	-	-
BEER	(10)(11)		-	-	-	-	-	-	-	-
tendimento ηs	(10)(12)	%	-	-	-	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA	AMENTO (I	Rea. UE 8	13/2013)							
Design	(4)	kW	13.5	16.6	19.5	22.3	29.7	34.7	40.1	44.6
COP	(4)(13)		4,09	4,10	4,16	4,20	4,07	4,19	4,16	4,21
Rendimento ns	(4)(14)	%	161	161	163	165	160	165	163	165
Classe di efficienza stagionale	(15)		A++	A++	A++	A++	A++	A++	A++	A++
CAMBIATORI	, ,									
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE									
Portata	(1)	l/s	0.862	1.053	1.169	1.370	1.771	2.098	2.427	2.688
Perdita di carico allo scambiatore	(1)	kPa	16.1	17.3	15.0	16.3	18.2	15.8	16.7	16.2
CAMBIATORE UTENZA IN RISCALDAN	. ,	NI a	10, 1	17,0	10,0	10,0	10,2	10,0	10,7	10,2
Portata	(3)	l/s	0.913	1.133	1,307	1,486	1.964	2,296	2.646	2,943
	(3)	kPa	- ,	,			,		,	
Perdita di carico allo scambiatore	(3)	кга	18,1	20,0	18,7	19,2	22,3	19,0	19,8	19,4
CIRCUITO FRIGORIFERO		N°	2	2	2	2	2	2	2	2
I. compressori			2	2	2	2	2	2	2	2
I. circuiti		N°	1	1	1	1	1	1	1	
Carica refrigerante teorica		kg	8,20	8,50	18,3	18,5	19,0	20,2	21,1	21,5
ENTILATORI			4.6.							
Portata d' aria nominale		m³/s	1,81	2,08	2,22	2,36	3,61	4,44	4,86	5,14
Prevalenza statica utile nominale		Pa	120	120	120	120	120	120	120	120
IVELLI SONORI										
otenza sonora totale in refrigerazione	(5)(6)(16)	dB(A)	68	70	72	73	76	74	76	77
otenza sonora in riscaldamento	(5)(7)(16)	dB(A)	60	61	59	60	73	72	74	73
otenza sonora totale in riscaldamento	(5)(8)(16)	dB(A)	68	70	72	73	76	74	76	77
IMENSIONI E PESI										
1	(9)	mm	1500	1500	2480	2480	2480	2480	2480	2480
3	(9)	mm	900	900	1100	1100	1100	1100	1100	1100
1	(9)	mm	1910	1910	2100	2100	2100	2100	2100	2100
Peso in funzionamento	(9)	kg	480	490	820	830	860	920	920	940

Note

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Potenza sonora totale dei ventilatori come dichiarata dal costruttore riferita alla velocità di rotazione nominale e prevalenza statica utile nominale.
 Potenza sonora in refrigerazione, outdoors.

- 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 16 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

NX-CN /SL-K			0272	0302	0352	0402	0452	0502	0552	0602
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI										
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	64,42	72,59	82,03	91,09	102,9	118,8	132,6	145,7
Potenza assorbita totale	(1)	kW	23.07	26.39	30.87	34,39	39.12	42.58	49.66	57.36
EER	(1)	kW/kW	2,788	2,750	2.654	2,648	2.632	2,789	2.668	2,538
REFRIGERAZIONE (EN14511 VALUE)		,	2,. 00	2,.00	2,00	2,0.0	2,002	2,.00	2,000	
Potenza frigorifera	(1)(2)	kW	64.40	72.50	81.90	91,00	102.8	118.7	132.5	145.6
EER	(1)(2)	kW/kW	2,970	2,910	2,800	2,790	2,770	2,960	2,810	2,670
Classe EUROVENT	(1)(2)	IX V / IX V V	2,370	2,910	-	2,730	-	2,900	2,010	2,070
RISCALDAMENTO (GROSS VALUE)										
Potenza termica totale	(3)	kW	69,20	77,93	87,39	99,80	111,9	129,4	144,6	159,1
Potenza assorbita totale	(3)	kW	23.30	25.89	29.63	33.67	37.47	42.29	48.47	54.79
COP	(3)	kW/kW		3,008	2,953	2,961	2,984	3,059	2,981	2,903
	(3)	KVV/KVV	2,970	3,006	2,955	2,961	2,904	3,059	2,961	2,903
RISCALDAMENTO (EN14511 VALUE)	(0)(0)	1.147	00.00	70.00	07.50	00.00	110.1	100 5	4440	450.0
Potenza termica totale	(3)(2)	kW	69,30	78,00	87,50	99,90	112,1	129,5	144,8	159,3
COP	(3)(2)	kW/kW	3,160	3,190	3,120	3,130	3,150	3,240	3,150	3,060
Classe EUROVENT										
EFFICIENZA ENERGETICA										
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente										
Prated,c	(10)	kW	-	-	-	-	-	-	-	-
SEER	(10)(11)		-	-	-	-	-	-	-	-
Rendimento ns	(10)(12)	%	-	-	-	-	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA	AMENTO (I	Rea. UE 8	313/2013)							
PDesign	(4)	kW	50.8	57.1	63.7	72,5	81.2	93.9	105	116
SCOP	(4)(13)		4,09	3,91	3,97	3,80	3,93	3,97	4,03	3,75
Rendimento ns	(4)(14)	%	161	153	156	149	154	156	158	147
Classe di efficienza stagionale	(15)	,,,	A++	A++	A++	-	-	-	-	
SCAMBIATORI	(10)			,,						
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE									
Portata	(1)	l/s	3.081	3.471	3.923	4.056	4.922	5.682	6.342	6.967
Perdita di carico allo scambiatore	(1)	kPa	12.3	11,8	12.5	4,356 12.2	12.5	12.8	13.6	13.8
	. ,	KPa	12,3	11,0	12,5	12,2	12,5	12,0	13,0	13,0
SCAMBIATORE UTENZA IN RISCALDAN		.,	0.040	0.700	4.040	4.040	5 400	0.040		= 000
Portata	(3)	I/s	3,340	3,762	4,218	4,818	5,403	6,246	6,982	7,680
Perdita di carico allo scambiatore	(3)	kPa	14,4	13,9	14,5	15,0	15,1	15,5	16,5	16,7
CIRCUITO FRIGORIFERO										
N. compressori		N°	2	2	2	2	2	2	2	2
N. circuiti		N°	1	1	1	1	1	1	1	1
Carica refrigerante teorica		kg	34,1	29,9	31,1	32,2	37,7	38,9	39,9	49,0
VENTILATORI										
Portata d' aria nominale		m³/s	6,11	6,39	6,94	8,06	8,61	10,83	11,67	12,22
Prevalenza statica utile nominale		Pa	120	120	120	120	120	120	120	120
LIVELLI SONORI										
Potenza sonora totale in refrigerazione	(5)(6)(16)	dB(A)	81	74	76	79	75	80	82	84
Potenza sonora in riscaldamento	(5)(7)(16)	dB(A)	75	72	71	76	77	76	76	81
Potenza sonora totale in riscaldamento	(5)(8)(16)	dB(A)	81	74	76	79	75	80	82	84
DIMENSIONI E PESI	(-)(-)(.0)	~_(, 1)	Ų,		. 0	. 0			<u> </u>	0.
A	(9)	mm	2980	2980	2980	2980	3970	3970	3970	4670
В	(9)	mm	1260	1260	1260	1260	1260	1260	1260	1260
<u>В</u> Н	(9)	mm	2100	2100	2100	2100	2100	2100	2100	2100
п Peso in funzionamento	(9)		1090	1160	1230	1320	1610	1630	1650	1880
r eso in iunzionamento	(9)	kg	1090	1100	1230	1320	1010	1030	1000	1000

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C_LIR_87% Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora totale dei ventilatori come dichiarata dal costruttore riferita alla velocità di rotazione nominale e prevalenza statica utile nominale.
 Potenza sonora in refrigerazione, outdoors.
 Potenza sonora in riscaldamento, indoors.

- 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 16 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

0072 - 1104 18,03-265,3 kW

NX-CN /SL-K			0702	0524	0604	0704	0804	0904	1004
limentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
RESTAZIONI									
EFRIGERAZIONE (GROSS VALUE)									
otenza frigorifera	(1)	kW	166,5	121,9	139,6	161,4	179,8	212,2	234,1
otenza assorbita totale	(1)	kW	65,20	45.49	53,82	61,42	70,62	78,27	88.72
ER	(1)	kW/kW	2,554	2,679	2,595	2,629	2,547	2,710	2,639
EFRIGERAZIONE (EN14511 VALUE)			,	,	,	,	,	,	,
otenza frigorifera	(1)(2)	kW	166.4	121.8	139.4	161.3	179.5	211.9	233.8
ER S	(1)(2)	kW/kW	2.680	2,830	2,720	2,760	2,670	2,860	2,760
lasse EUROVENT	. , , ,		-	-	-	-	-	-	-
ISCALDAMENTO (GROSS VALUE)									
otenza termica totale	(3)	kW	181.8	133.1	153,7	175.9	194.3	227,8	251.1
otenza assorbita totale	(3)	kW	62.17	44.85	52.15	59.27	66.80	76.69	84.79
OP	(3)	kW/kW	2,923	2,964	2,944	2,966	2,909	2,970	2,961
ISCALDAMENTO (EN14511 VALUE)	. , ,		,	,	,-	,	,	,-	,
otenza termica totale	(3)(2)	kW	182,0	133,3	153,9	176,2	194,6	228,1	251,5
OP	(3)(2)	kW/kW	3,070	3,130	3,100	3,130	3,060	3,130	3,110
lasse EUROVENT	,,,,		,	.,	,	,	,	,	-, -
FFICIENZA ENERGETICA									
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UF	2016/2281)					
efrigerazione d'ambiente		,g. DE		,					
rated.c	(10)	kW	_	_	_	_	_	_	_
EER	(10)(11)	1,44	_	_	_	_	_	_	_
endimento ns	(10)(12)	%	-	-	_	-	_	_	_
FFICIENZA STAGIONALE IN RISCALDA	. , , ,		13/2013)						
Design	(4)	kW	133	97,4	112	128	140	165	180
COP	(4)(13)	IX V V	3.89	4.10	3.99	4.12	3.92	4.08	4.03
endimento ηs	(4)(14)	%	152	161	156	162	154	160	158
lasse di efficienza stagionale	(15)	,,	-	-	-	-	-	-	-
CAMBIATORI	(- /								
CAMBIATORE UTENZA IN REFRIGERA	ZIONE								
ortata	(1)	l/s	7,963	5,832	6,675	7,721	8,596	10,15	11.19
erdita di carico allo scambiatore	(1)	kPa	14.4	18.7	18.4	18.5	18,4	19.5	19.3
CAMBIATORE UTENZA IN RISCALDAN	. ,	ili a	17,7	10,7	10,4	10,0	10,4	10,0	10,0
ortata	(3)	l/s	8,777	6,427	7,420	8,491	9,379	10,99	12.12
erdita di carico allo scambiatore	(3)	kPa	17,5	22,7	22.8	22,4	21,9	22,9	22,7
RCUITO FRIGORIFERO	(0)	iti d	17,0	22,1	22,0	22,7	21,0	22,0	22,1
. compressori		N°	2	4	4	4	4	4	4
circuiti		N°	1	2	2	2	2	2	2
arica refrigerante teorica		kg	56.9	43.0	44.3	51.5	53.5	68.5	71.0
ENTILATORI		ng.	55,5	10,0	1 7,0	01,0	55,5	55,5	, 1,0
ortata d' aria nominale		m³/s	13,89	11.11	12,22	13.89	15.00	19.17	19.72
revalenza statica utile nominale		Pa	120	120	120	120	120	120	120
VELLI SONORI		ı a	120	120	120	120	120	120	120
otenza sonora totale in refrigerazione	(5)(6)(16)	dB(A)	86	81	82	79	80	85	86
otenza sonora in riscaldamento	(5)(7)(16)	dB(A)	80	77	80	73	73	85	85
otenza sonora in riscaldamento	(5)(8)(16)	dB(A)	86	81	82	79	80	85	86
IMENSIONI E PESI	(-)(-)(.0)	GD(/T)	50	J.	- J_	, ,		30	
INCITOTO AL EL EUL	(9)	mm	5670	3970	4670	5670	5670	5670	5670
	(9)	mm	1260	1260	1260	1260	1260	1260	1260
	(9)	mm	2100	2100	2100	2100	2100	2100	2100
eso in funzionamento	(9)	kg	2120	1610	1840	2310	2460	2550	2610

Note

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Potenza sonora totale dei ventilatori come dichiarata dal costruttore riferita alla velocità di rotazione nominale e prevalenza statica utile nominale.
 Potenza sonora in refrigerazione, outdoors.

- 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 16 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

NX-CN /A			0072	0092	0102	0122	0152	0182	0202	0232
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI										
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	18,74	23,01	26,05	30,93	38,29	45,37	52,47	58,35
Potenza assorbita totale	(1)	kW	6.110	7.930	9.330	11,17	12.91	14.68	17.42	19.97
EER	(1)	kW/kW	3,061	2.900	2,787	2,759	2,969	3,088	3,017	2,915
REFRIGERAZIONE (EN14511 VALUE)		,	0,00.	2,000	2,. 0.	2,.00	2,000	0,000	0,011	2,0.0
Potenza frigorifera	(1)(2)	kW	18.70	23.00	26.00	30.90	38.20	45.30	52.40	58.30
EER	(1)(2)	kW/kW	3,380	3,160	3,060	3,010	3,220	3,410	3,280	3,160
Classe EUROVENT	(· /(=/	10071000	-	-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)										
Potenza termica totale	(3)	kW	19,42	24,20	28,26	32,28	41,76	48,86	56,28	62,60
Potenza assorbita totale	(3)	kW	6.903	8.689	10.34	12.02	14.07	16.10	18.74	21.31
COP	(3)	kW/kW	2,812	2,785	2,748	2,692	2,965	3,037	3,011	2,939
	(3)	KVV/KVV	2,012	2,700	2,740	2,092	2,903	3,037	3,011	2,939
RISCALDAMENTO (EN14511 VALUE)	(2)(2)	LAA/	10 F0	24.20	20.20	20.20	44.00	40.00	FG 40	60.70
Potenza termica totale	(3)(2)	kW	19,50	24,20	28,30	32,30	41,80	48,90	56,40	62,70
COP	(3)(2)	kW/kW	3,080	3,020	2,990	2,910	3,200	3,320	3,260	3,170
Classe EUROVENT										
EFFICIENZA ENERGETICA										
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente										
Prated,c	(10)	kW	-	-	-	-	-	-	-	-
SEER	(10)(11)		-	-	-	-	-	-	-	-
Rendimento ηs	(10)(12)	%	-	-	-	-	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA	AMENTO (F	Reg. UE 8	313/2013)							
PDesign	(4)	kW	13,9	17,1	20,4	23,5	30,5	35,7	41,2	46,0
SCOP	(4)(13)		4,15	4,05	4,06	4,01	4,02	4,11	4,07	4,08
Rendimento ns	(4)(14)	%	163	159	160	157	158	161	160	160
Classe di efficienza stagionale	(15)		A++	A++	A++	A++	A++	A++	A++	A++
SCAMBIATORI	` ,									
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE									
Portata	(1)	l/s	0.896	1.100	1.246	1.479	1.831	2.170	2.509	2.790
Perdita di carico allo scambiatore	(1)	kPa	17.4	18.9	17.0	19.0	19.4	16.9	17,8	17.4
SCAMBIATORE UTENZA IN RISCALDAN	. ,	IXI G	17,-	10,0	17,0	10,0	10,4	10,5	17,0	17,4
Portata	(3)	l/s	0.937	1.168	1.364	1,558	2.016	2.358	2.717	3.022
Perdita di carico allo scambiatore	(3)	kPa	19,1	21,3	20,4	21,1	23,5	20,0	20,9	20,5
CIRCUITO FRIGORIFERO	(3)	кга	19,1	21,0	20,4	21,1	23,3	20,0	20,9	20,5
		N°	2	2	2	2	2	2	2	2
N. compressori				1	1			1	1	1
N. circuiti		N°	1		•	1 10.5	1 100			
Carica refrigerante teorica		kg	8,20	8,50	18,3	18,5	19,0	20,2	21,1	21,5
VENTILATORI		21	0.50	2.00			4.00		0.50	
Portata d' aria nominale		m³/s	2,50	2,92	3,75	4,17	4,86	6,11	6,53	6,94
Prevalenza statica utile nominale		Pa	120	120	120	120	120	120	120	120
LIVELLI SONORI										
Potenza sonora totale in refrigerazione	(5)(6)(16)	dB(A)	74	78	84	86	83	81	82	84
Potenza sonora in riscaldamento	(5)(7)(16)	dB(A)	66	68	70	66	76	79	80	79
Potenza sonora totale in riscaldamento	(5)(8)(16)	dB(A)	74	78	84	86	83	81	82	84
DIMENSIONI E PESI										
A	(9)	mm	1500	1500	2480	2480	2480	2480	2480	2480
В	(9)	mm	900	900	1100	1100	1100	1100	1100	1100
	(9)	mm	1910	1910	2100	2100	2100	2100	2100	2100
H	(9)	111111								

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C_LLR_87% Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora totale dei ventilatori come dichiarata dal costruttore riferita alla velocità di rotazione nominale e prevalenza statica utile nominale.
 Potenza sonora in refrigerazione, outdoors.
 Potenza sonora in riscaldamento, indoors.

- 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 16 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

0072 - 1104 18,03-265,3 kW

NX-CN /A			0272	0302	0352	0402	0452	0502	0552	0602
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/5
PRESTAZIONI										
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	66.63	76.02	85.95	94.75	108,3	122,0	136.6	152,7
Potenza assorbita totale	(1)	kW	23,31	25,80	30,07	34,11	37,83	42,16	49.13	57,38
ER	(1)	kW/kW	2.858	2.946	2,854	2,780	2,865	2.891	2,782	2.660
REFRIGERAZIONE (EN14511 VALUE)	(1)	IX V / IX V V	2,000	2,340	2,004	2,700	2,000	2,031	2,702	2,000
Potenza frigorifera	(1)(2)	kW	66.60	75.90	85.90	94.70	108.2	121.9	136.5	152,5
EER	(1)(2)	kW/kW	3.090	3.200	3.070	2.980	3.080	3,110	2.960	2.840
Classe EUROVENT	(1)(2)	KVV/KVV	-,	-,	-,	,	-,	,	,	,
			-	-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)	(0)					400.0	4450	404 =		4040
Potenza termica totale	(3)	kW	70,87	80,28	90,06	103,0	115,8	131,7	147,5	164,0
Potenza assorbita totale	(3)	kW	24,71	27,08	30,96	35,46	39,18	43,61	50,12	58,64
OOP	(3)	kW/kW	2,870	2,963	2,906	2,901	2,954	3,021	2,944	2,799
RISCALDAMENTO (EN14511 VALUE)										
otenza termica totale	(3)(2)	kW	71,00	80,40	90,20	103,2	115,9	131,8	147,7	164,2
OP	(3)(2)	kW/kW	3,090	3,210	3,120	3,110	3,180	3,240	3,140	2,980
Classe EUROVENT										
FFICIENZA ENERGETICA										
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente		, , ,		,						
Prated.c	(10)	kW	_	_	_	_	_	_	_	_
SEER	(10)(11)	IXVV								
Rendimento ns	(10)(12)	%								
FFICIENZA STAGIONALE IN RISCALD	. , , ,		13/2013)							
PDesign	(4)	kW	52.2	59.0	65.9	75.1	84.4	95.9	108	120
6COP	(4)(13)	K V V	3,99	3,94	3,97	3,80	3,97	3,97	4,01	3,68
Rendimento ns	(4)(13)	%	156	155	156	149	156	156	157	144
Classe di efficienza stagionale	(15)	70	A++	A++	A++	-	-	-	- 137	- 144
	(13)		Атт	Атт	Атт					
SCAMBIATORI										
SCAMBIATORE UTENZA IN REFRIGERA										
Portata	(1)	I/s	3,186	3,635	4,110	4,531	5,178	5,835	6,532	7,301
Perdita di carico allo scambiatore	(1)	kPa	13,1	13,0	13,8	13,3	13,9	13,5	14,4	15,1
SCAMBIATORE UTENZA IN RISCALDAI	MENTO									
Portata	(3)	l/s	3,421	3,875	4,347	4,974	5,589	6,356	7,120	7,918
Perdita di carico allo scambiatore	(3)	kPa	15,2	14,7	15,4	16,0	16,2	16,1	17,1	17,8
CIRCUITO FRIGORIFERO										
N. compressori		N°	2	2	2	2	2	2	2	2
l. circuiti		N°	1	1	1	1	1	1	1	1
Carica refrigerante teorica		kg	34,1	29,9	31,1	32,2	37,7	38,9	39,9	49,0
/ENTILATORI		Ŭ								
Portata d' aria nominale		m³/s	8,06	9,17	9,72	11,11	12,50	13,33	14,44	16,94
Prevalenza statica utile nominale		Pa	120	120	120	120	120	120	120	120
IVELLI SONORI										,
otenza sonora totale in refrigerazione	(5)(6)(16)	dB(A)	87	81	82	85	83	84	86	91
Potenza sonora in riscaldamento	(5)(7)(16)	dB(A)	76	79	78	79	79	80	81	82
otenza sonora totale in riscaldamento	(5)(8)(16)	dB(A)	87	81	82	85	83	84	86	91
	(3)(0)(10)	UD(A)	01	01	02	00	03	04	00	31
DIMENSIONI E PESI	(9)		2980	2980	2980	2000	2070	2070	3970	4670
		mm				2980	3970	3970		
3	(9)	mm	1260	1260	1260	1260	1260	1260	1260	1260
1	(9)	mm	2100	2100	2100	2100	2100	2100	2100	2100
Peso in funzionamento	(9)	kg	1090	1160	1230	1320	1610	1630	1650	1880

Note

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Potenza sonora totale dei ventilatori come dichiarata dal costruttore riferita alla velocità di rotazione nominale e prevalenza statica utile nominale.
 Potenza sonora in refrigerazione, outdoors.

- 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 16 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

NX-CN /A			0702	0524	0604	0704	0804	0904	1004	
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	
PRESTAZIONI										
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	173,7	124,8	144,3	169,3	187,2	216,9	238,0	
Potenza assorbita totale	(1)	kW	65,69	44,80	53,22	59,86	68,64	77,49	88,02	
EER	(1)	kW/kW	2,644	2,786	2,712	2,826	2,729	2,799	2,705	
REFRIGERAZIONE (EN14511 VALUE)			,	,	,	,	,	,	,	
Potenza frigorifera	(1)(2)	kW	173,6	124,6	144,2	169,0	186,9	216,6	237,7	
EER	(1)(2)	kW/kW	2.810	2.960	2.880	3,040	2,900	2,970	2.850	
Classe EUROVENT	(/ (/		-	-	-	-	-	-,	-,	
RISCALDAMENTO (GROSS VALUE)										
Potenza termica totale	(3)	kW	186.8	134.8	156.8	181.2	199.6	230.8	253.9	
Potenza assorbita totale	(3)	kW	66,59	45,69	54,18	62,04	69,15	78,49	86,29	
COP	(3)	kW/kW	2,805	2.950	2,893	2.923	2,889	2.940	2.942	
RISCALDAMENTO (EN14511 VALUE)	(-)	1000/1000	2,000	2,000	2,000	2,020	2,000	2,010	2,012	
Potenza termica totale	(3)(2)	kW	187.1	135.0	157.1	181.5	199.9	231.2	254.3	
COP	(3)(2)	kW/kW	2.980	3.140	3.070	3.140	3,080	3.120	3.100	
Classe EUROVENT	(0)(2)	IX V V / IX V V	2,300	0,140	0,070	0, 140	3,000	0,120	3,100	
EFFICIENZA ENERGETICA										
	DAMENTO	/Dem III	2046/2224							
FFICIENZA STAGIONALE IN RAFFRED	DAMENIO	(Reg. UE	∠016/2281)						
Refrigerazione d'ambiente	(40)									
Prated,c	(10)	kW	-	-	-	-	-	-	-	
EER	(10)(11)	0/	-	-	-	-	-	-	-	
tendimento ηs	(10)(12)	%	-	-	-	-	-	-	-	
FFICIENZA STAGIONALE IN RISCALDA										
Design	(4)	kW	137	100	117	135	146	171	183	
COP	(4)(13)		3,76	4,15	4,01	4,16	3,98	4,06	4,02	
Rendimento ηs	(4)(14)	%	147	163	158	163	156	160	158	
Classe di efficienza stagionale	(15)		-	-	-	-	-	-	-	
CAMBIATORI										
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE									
Portata	(1)	l/s	8,308	5,966	6,903	8,094	8,952	10,37	11,38	
Perdita di carico allo scambiatore	(1)	kPa	15,7	19,6	19,7	20,4	19,9	20,4	20,0	
CAMBIATORE UTENZA IN RISCALDAN	IENTO									
Portata	(3)	l/s	9,019	6,508	7,570	8,749	9,635	11,14	12,26	
Perdita di carico allo scambiatore	(3)	kPa	18,4	23,3	23,7	23,8	23,1	23,5	23,2	
CIRCUITO FRIGORIFERO										
I. compressori		N°	2	4	4	4	4	4	4	
I. circuiti		N°	1	2	2	2	2	2	2	
Carica refrigerante teorica		kg	56,9	43,0	48,4	64,1	66,3	68,5	71,0	
/ENTILATORI				·						
Portata d' aria nominale		m³/s	18,61	13,06	15,56	19,72	19,72	21,94	21,94	
Prevalenza statica utile nominale		Pa	120	120	120	120	120	120	120	
IVELLI SONORI										
Potenza sonora totale in refrigerazione	(5)(6)(16)	dB(A)	93	84	87	86	86	88	88	
otenza sonora in riscaldamento	(5)(7)(16)	dB(A)	85	81	85	80	81	88	88	
otenza sonora totale in riscaldamento	(5)(8)(16)	dB(A)	93	84	87	86	86	88	88	
DIMENSIONI E PESI	(-)(-)(10)	GD(/1)		0.1	<u> </u>					
\	(9)	mm	5670	3970	4670	5670	5670	5670	5670	
3	(9)	mm	1260	1260	1260	1260	1260	1260	1260	
1	(9)	mm	2100	2100	2100	2100	2100	2100	2100	

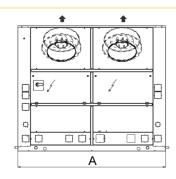
- 1
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in) 35°C.

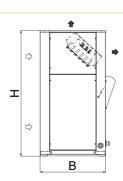
 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente 2
- Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Potenza sonora totale dei ventiliatori come dichiarata dal costruttore riferita alla velocità di rotazione nominale e prevalenza statica utile nominale.


 Potenza sonora in refrigerazione, outdoors.


 Potenza sonora in riscaldamento, indoors. 4
- 5

- 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 16 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R410A [GWP₁₀₀ 2088] ad effetto serra Dati certificati in EUROVENT

Disegno dimensionale

0472 - 1152 443.9-1154 kW

Unità reversibile con sorgente aria, compressori vite inverter e ventilatori EC, per installazione esterna.

Unità da esterno in pompa di calore per la produzione di acqua refrigerata/riscaldata con compressori a vite a velocità variabile di tipo semiermetico dedicati per l'utilizzo di R513A, ventilatori EC, batteria di scambio termico con tubi in rame e alette in alluminio, scambiatore a fascio tubiero a struttura asimmetrica di progettazione Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A. e valvola di espansione elettronica. I compressori utilizzati sono del tipo a velocità variabile con inverter integrato, raffreddato a refrigerante, per la massima compattezza e flessibilità di impiego. Sono inoltre dotati di dispositivo per la variazione automatica del rapporto di compressione in funzione delle condizioni di lavoro. Grazie all'accurata progettazione di tutti i componenti interni e all'utilizzo delle tecnologie a velocità variabile, la macchina garantisce flessibilità, affidabilità e massima efficienza in tutte le condizioni operative. Sono unità dedicate ad impianti a due tubi, in grado di produrre acqua calda o fredda in funzione della modalità impostata.

Comando

Controllore elettronico W3000+

W3000+ si caratterizza per le evolute logiche proprietarie e l'innovativa interfaccia utente KIPlink (Keyboard In your Pocket). Basata su tecnologia WiFi, KIPlink permette di operare sull'unità direttamente da smartphone e tablet. Funzionalità: accendere e spegnere l'unità, modificare il set point, graficare le principali grandezze di funzionamento, monitorare lo stato dei circuiti frigoriferi e dei vari componenti, visualizzare gli allarmi presenti. La modulazione continua della capacità si basa su regolazione sequenziale + PID riferita alla temperatura di mandata dell'acqua. E' possibile gestire lo storico allarmi, con funzioni "black box" (tramite PC). L'orologio integrato permette la creazione di un profilo fino a 4 giorni e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia richiesta. Per sistemi a più unità è possibile regolare le risorse tramite dispositivi proprietari opzionali. Inoltre, può essere attuata la contabilizzazione dei consumi e delle prestazioni, mentre la supervisione è realizzabile con dispositivi proprietari o in integrazione in sistemi di terze parti mediante protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks. Il controllo a portata idraulica variabile è previsto di standard (funzione VPF.E).

Refrigerante

Versioni

A Alta efficienza

SL-A Super silenziata, alta efficienza

Configurazioni

Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

ELEVATA EFFICIENZA

Elevati valori di efficienza, sia a carico pieno che a carico parziale. La tecnologia full inverter, con compressori vite a modulazione continua di velocità e ventilatori EC di serie, garantisce l'esatta energia in corrispondenza del reale fabbisogno dell'impianto. Le elevate efficienze si traducono in consumi energetici ridotti durante tutto l'anno, per qualsiasi modalità operativa e per qualsiasi condizione esterna.

ErP COMPLIANT 2021

Le elevatissime efficienze ai carichi parziali garantite dalla tecnologia inverter consentono di soddisfare e superare l'efficienza stagionale minima definita dalla Direttiva 2009/125/EC per la progettazione ecosostenibile, superando abbondantemente anche il livello minimo imposto a partire dal 2021.

REFRIGERANTE A BASSO GWP

Refrigerante R513A, caratterizzato da effetto serra ridotto (GWP R513A = 572, GWP R134a = 1300 secondo IPCC) e zero impatto sullo strato di ozono. Non infiammabile (ASHRAE 34, ISO 817: classe A1).

COMPATTEZZA

Le ridotte dimensioni dell'unità ne facilitano la movimentazione e l'installazione, rendendola idonea anche per quelle applicazioni dove l'ingombro in pianta è un fattore critico.

FORNITURA DI ACQUA CALDA

Fornitura di acqua calda in utilizzo fino a 60°C, per la massima versatilità rispetto alle soluzioni impiantistiche adottate

ADATTABILITA'

Adattabilità alle esigenze dell'impianto grazie alla modulazione continua della capacità termica, garantita da sofisticate logiche di regolazione e dalla precisione nel controllo, a beneficio dell'efficienza.

ARMONIA MACCHINA-IMPIANTO

Ridotte correnti di spunto e power factor superiore ad analoghe unità senza tecnologia inverter, permettono lo snellimento della parte elettrica di supporto che risulta priva di sollecitazioni e di componenti aggiuntivi per il rifasamento del carico. L'unità è inoltre in grado di parzializzare con gradini infiniti con evidenti benefici sulla stabilità della temperatura di mandata.

PORTATA VARIABILE

Regolazione avanzata delle pompe inverter a seconda del carico richiesto che consente di ridurre i consumi elettrici e garantire il funzionamento dell'unità anche in condizioni critiche.

ESTESO CAMPO DI FUNZIONAMENTO

Funzionamento garantito con temperature aria esterna fino a -12°C durante la stagione invernale e fino a +50 °C nella stagione estiva. Produzione di acqua calda fino a 60°C senza l'aggiunta di accessori, e di acqua fredda da -8°C fino a +20°C per adattarsi a qualsiasi applicazione.

Accessori

- Noise reducer (solo le ver. non SL)
- Sistema VPF (Variable Primary Flow)
- Connettività remota con protocolli: ModBus, ModBus over IP (TCP/IP), Echelon, BacNet MS/TP RS485, Bacnet over IP, Konnex, SNMP
- Gruppo pompe

- Batterie tradizionali con tubi in rame e alette in alluminio, disponibili anche con alette pre-verniciate o con trattamento protettivo Blygold PoluAl XT
- Funzione Notturna (night mode) per limitare il livello sonoro dell'unità.

	V/ph/Hz	400/2/50								
		400/3/30	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
(1)	kW	465.0	517.9	549.9	590.8	669.9	764.1	899.3	1034	1154
(1)	kW	166.0	177.9	194.2	211.1	237.8	265.5	314.0	351.4	390.5
. ,										2,955
(· /	1000/1000	2,001	2,011	2,002	2,700	2,017	2,010	2,001	2,010	
(1)(2)	k\N	464 6	517 A	549.4	590 4	669.4	763.6	898.8	1033	1153
. , . ,		- , -	- ,	,	,	,	, -	, -		2,930
(· /(-/	IX V / IX V	-	,	,	,	2,700	,	2,040	2,510	2,500
(3)	k\٨/	152.8	506.3	547.4	575.3	663.8	747.6	871 <i>/</i>	1006	1111
		- ,-		- ,		,-				327,5
										3,392
(0)	IX V V / IX V V	3,233	3,310	3,230	5,231	3,203	0,040	0,000	3,424	3,332
(3)(2)	k\\\	153.2	506.8	547.0	575.7	664.3	7/0 1	972 N	1007	1112
		,	, -	- ,-		, -	- ,	- ,-		3,360
(3)(2)	KVV/KVV	3,230	3,290	3,200	3,270	3,200	3,320	3,310	3,390	3,300
	·		4)							
AMENIO	(Reg. UE	2016/228	1)							
` '	kW	-								1153
, ,, ,		-								4,84
. ,. ,			-	190	190	188	190	190	189	191
		,								
	kW			-	-	-	-	-	-	-
				-	-	-	-	-	-	-
. , . ,	%			-	-	-	-	-	-	-
(15)		-	-	-	-	-	-	-	-	-
IONE										
(1)	l/s	22,24	24,76	26,29	28,25	32,04	36,54	43,01	49,43	55,17
(1)	kPa	32,0	36,6	41,2	26,9	33,3	34,3	32,4	42,8	37,5
NTO										
(3)	l/s	21,86	24,44	26,42	27,77	32,04	36,09	42,07	48,56	53,64
(3)	kPa	31,0	35,6	41,6	26,0	33,3	33,4	31,0	41,3	35,4
	N°	2	2	2	2	2	2	2	2	2
	N°	2	2	2	2	2	2	2	2	2
	kg	233	259	253	276	288	391	495	518	618
(5)	dB(A)	80	81	81	81	81	81	81	82	82
		100	102	102	102	102	103	103	105	105
										106
	(- 1)									
(9)	ka	6400	6894	7033	7256	7518	8551	9835	11578	12651
										11800
. ,										2260
(9)	mm	2580	2580	2580	2580	2580	2580	2580	2580	2580
	(10) (10)(11) (10)(12) (40)(13) (4)(13) (4)(14) (15) (10) (1) (10) (10) (10) (10) (10) (10)	(1)(2) kW (1)(2) kW/kW (3) kW/kW (3) kW/kW (3) kW/kW (3)(2) kW/kW (3)(2) kW/kW (3)(2) kW/kW AMENTO (Reg. UE (10) kW (10)(11) (10)(12) % MENTO (Reg. UE 8 (4) (4)(13) (4)(14) % (15) IONE (1) l/s (1) kPa :NTO (3) l/s (3) kPa N° kg (5) dB(A) (6)(7) dB(A) (6)(8) dB(A) (9) kg (9) mm (9) mm	(1)(2) kW 464,6 (1)(2) kW/kW 2,780 - (3) kW 452,8 (3) kW 139,1 (3) kW/kW 3,255 (3)(2) kW 453,2 (3)(2) kW/kW 3,230 AMENTO (Reg. UE 2016/228 (10) kW - (10)(11) - (10)(12) % - (10)(12) % - (10)(14) 4 348 (4)(13) 4,00 (4)(14) 9 157 (15) - IONE (1) l/s 22,24 (1) kPa 32,0 ENTO (3) l/s 21,86 (3) kPa 31,0 N° 2 kg 233 (5) dB(A) 80 (6)(7) dB(A) 100 (6)(8) dB(A) 101 (9) kg 6400 (9) mm 4900	(1)(2) kW 464,6 517,4 (1)(2) kW/kW 2,780 2,880	(1)(2) kW 464,6 517,4 549,4 (1)(2) kW/kW 2,780 2,880 2,800	(1)(2) kW 464,6 517,4 549,4 590,4 (1)(2) kW/kW 2,780 2,880 2,800 2,780	(1)(2) kW 464,6 517,4 549,4 590,4 669,4 (1)(2) kW/kW 2,780 2,880 2,800 2,780 2,790	(1)(2) kW 464,6 517,4 549,4 590,4 669,4 763,6 (1)(2) kW/kW 2,780 2,880 2,800 2,780 2,790 2,850 2,990 2	(1)(2) kW 464,6 517,4 549,4 590,4 669,4 763,6 898,8 (1)(2) kW/kW 2,780 2,880 2,800 2,780 2,780 2,850 2,840 2,780 2,850 2,840 2,780 2,780 2,850 2,840 2,780 2,780 2,850 2,840 2,780 2,780 2,780 2,850 2,840 2,780 2,780 2,780 2,850 2,840 2,780 2,780 2,780 2,850 2,840 2,780 2,780 2,780 2,850 2,840 2,780 2,780 2,780 2,850 2,840 2,780 2,780 2,850 2,840 2,780 2,780 2,850 2,840 2,780 2,780 2,850 2,840 2,780 2,780 2,850 2,840 2,780 2,850 2,840 2,850 2,840 2,850 2,850 2,840 2,850 2,850 2,850 2,840 2,850 2	(1)(2) kW 464,6 517,4 549,4 590,4 669,4 763,6 898,8 1033 (1)(2) kW/kW 2,780 2,880 2,800 2,780 2,790 2,850 2,840 2,910 2.30 (3) kW 452,8 506,3 547,4 575,3 663,8 747,6 871,4 1006 (3) kW/kW 3,255 3,318 3,298 3,291 3,283 3,349 3,335 3,424 (3)(2) kW 453,2 506,8 547,9 575,7 664,3 748,1 872,0 1007 (3)(2) kW/kW 3,230 3,290 3,260 3,270 3,260 3,320 3,310 3,390 (10)(11) 4,83 4,84 4,76 4,82 4,83 4,79 (10)(12) % 190 190 188 190 190 189 (10)(12) % 190 190 188 190 190 189 (4)(4)(13) 4,00 4,03

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)
- 35°C. Valori riferiti alla normativa EN14511 2
- Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%. Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

443,9-1154 kW

0472 - 1152

Unità reversibile con sorgente aria, compressori vite inverter e ventilatori EC, per installazione esterna.

i-FX-N-G05/SL-A			0472	0512	0572	0602	0652	0772	0902	1002	1152
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI											
REFRIGERAZIONE (GROSS VALUE)											
Potenza frigorifera	(1)	kW	443,9	497,6	531,9	570,7	649,1	740,7	870,1	998,0	1114
Potenza assorbita totale	(1)	kW	168,0	177,8	197,7	217,0	241,6	268,5	317,0	354,5	395,7
EER	(1)	kW/kW	2,642	2,799	2,690	2,630	2,687	2,759	2,745	2,815	2,815
REFRIGERAZIONE (EN14511 VALUE)											
Potenza frigorifera	(1)(2)	kW	443,6	497,1	531,4	570,3	648,7	740,2	869,6	997,3	1113
EER	(1)(2)	kW/kW	2,620	2,770	2,670	2,610	2,670	2,740	2,730	2,790	2,790
Classe EUROVENT			-	-	-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)											
Potenza termica totale	(3)	kW	448,3	500,0	541,9	567,9	657,4	740,1	862,6	996,6	1100
Potenza assorbita totale	(3)	kW	137,2	150,3	163,6	172,2	199,4	220,1	257,6	289,0	322,8
COP	(3)	kW/kW	3,267	3,327	3,312	3,298	3,297	3,363	3,349	3,448	3,408
RISCALDAMENTO (EN14511 VALUE)											
Potenza termica totale	(3)(2)	kW	448,6	500,4	542,4	568,3	657,9	740,6	863,2	997,3	1101
COP	(3)(2)	kW/kW	3,240	3,300	3,280	3,280	3,270	3,340	3,320	3,420	3,380
Classe EUROVENT											
EFFICIENZA ENERGETICA											
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/228	1)							
Refrigerazione d'ambiente		, ,		,							
Prated.c	(10)	kW	_	_	531	570	649	740	870	997	1113
SEER	(10)(11)		-	-	4,81	4,80	4.74	4.80	4.82	4,78	4.82
Rendimento ηs	(10)(12)	%	-	-	190	189	187	189	190	188	190
EFFICIENZA STAGIONALE IN RISCALDA	MENTO (Rea. UE 8	313/2013)								
PDesign	(4)	kW	347	383	-	-	-	-	-	-	-
SCOP	(4)(13)		4,02	4,03	-	-	-	-	-	-	-
Rendimento ηs	(4)(14)	%	158	158	-	-	-	-	-	-	-
Classe di efficienza stagionale	(15)		-	-	-	-	-	-	-	-	-
SCAMBIATORI											
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE										
Portata	(1)	l/s	21,23	23,79	25,44	27,29	31,04	35,42	41,61	47,72	53,26
Perdita di carico allo scambiatore	(1)	kPa	29,2	33,8	38,6	25,1	31,2	32,2	30,3	39,8	34,9
SCAMBIATORE UTENZA IN RISCALDAM	IENTO										
Portata	(3)	l/s	21,64	24,14	26,16	27,41	31,74	35,73	41,64	48,11	53,12
Perdita di carico allo scambiatore	(3)	kPa	30,3	34,7	40,8	25,3	32,6	32,8	30,3	40,5	34,7
CIRCUITO FRIGORIFERO											
N. compressori		N°	2	2	2	2	2	2	2	2	2
N. circuiti		N°	2	2	2	2	2	2	2	2	2
Carica refrigerante teorica		kg	243	271	285	307	317	391	541	536	598
LIVELLI SONORI		Ĭ									
Pressione sonora totale	(5)	dB(A)	72	73	73	73	73	73	73	74	74
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	92	94	94	94	94	95	95	97	97
Potenza sonora totale in riscaldamento	(6)(8)	dB(A)	93	95	95	95	95	96	96	98	98
DIMENSIONI E PESI											

Note

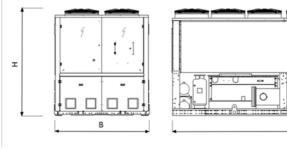
Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Aria scambiatore lato sorgente (in)

(9)

(9)

(9)

(9)


35°C. Valori riferiti alla normativa EN14511

Peso in funzionamento

- Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C - U.R. 87%.
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche

- 7 Potenza sonora in refrigerazione, outdoors.
 8 Potenza sonora in riscaldamento, outdoors.
 9 Unità in configurazione de descuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente
 15 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013] AVERAGE in accordo con il (REGOLAMENTO (UE) N. 813/2013)
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614. Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R513A [GWP₁₀₀ 631] ad effetto serra Dati certificati in EUROVENT

Disegno dimensionale

kg

mm

mm

mm

La pompa di calore dedicata al riscaldamento AW-HT rappresenta la migliore soluzione per impianti dove è richiesta produzione di acqua calda ad alta temperatura, sia per scopo riscaldamento che per uso sanitario. Il compressore con immissione supplementare di vapore nel ciclo di compressione e tecnologia EVI, garantisce il raggiungimento di temperature dell'acqua fino a 65°C e un ampliamento dei limiti di funzionamento fino a temperature esterne di -20°C. La mancanza di sonde geotermiche o collegamenti a pozzi rende l'installazione semplice e adatta ad ogni applicazione.

Comando

W3000SE

Controllore con display LCD dedicato ad applicazioni in pompa di calore con logica integrata per la produzione di acqua calda ad alta temperatura. La gestione delle differenti temperature avviene in modo automatico in base alle diverse condizioni in cui si trova ad operare il sistema, con la possibilità di assegnare dedicati livelli di priorità alla produzione dell'acqua ad uso sanitario a seconda delle diverse esigenze applicative. La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità.

Per sistemi a più unità è possibile effettuare la regolazione delle risorse in modo differenziato al fine di dedicare solo una parte della potenza installata per la produzione di acqua sanitaria, assicurando una più efficiente distribuzione dell'energia e garantendo la contemporaneità di alimentazione dell'acqua nei diversi sistemi di distribuzione. L'orologio integrato permette di creare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia e per la gestione dei cicli anti-legionella. Per lo sbrinamento è impiegata una logica proprietaria di tipo auto-adattativo che monitora i molteplici parametri di funzionamento e ambientali al fine di ridurre il numero e la durata degli sbrinamenti. Supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks.

Una dedicata tastiera per installazione a muro consente infine di assicurare il controllo remoto di tutte le funzioni.

Refrigerante

Versioni

CA-E Versione ad altissima efficienza, oltre la Classe A LN-CA-E Versione ad altissima efficienza, oltre la Classe A,

silenziata

Configurazioni

- Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

EFFICIENZA IN 'CLASSE A' PREMIUM

Tutta la gamma raggiunge efficienze di molto superiori ai livelli previsti per la classe energetica A. Le unità AW-HT/CA-E e AW-HT/LN-CA-E garantiscono elevati livelli di efficienza oltre che a silenziosità, rendono la gamma la migliore soluzione per ambienti residenziali e commerciali.

MASSIMA AFFIDABILITA

Massima affidabilità di esercizio grazie alle due principali caratteristiche:

- due circuiti indipendenti su tutte le taglie;
- sistema di prevenzione della formazione del ghiaccio in batteria che consente di ottenere cicli di sbrinamento più corti ed efficienti.

ESTESO CAMPO DI FUNZIONAMENTO

Produzione di acqua calda ad uso riscaldamento e in priorità per sanitario fino a 65°C. Funzionamento senza interruzione di operatività fino a -20°C.

ENERGIA RINNOVABILE PER IL SETTORE COMMERCIALE

Ideale nelle riqualificazioni di edifici in caso di sostituzione di caldaie centralizzate a metano o a gasolio, con possibilità di mantenere il preesistente sistema di distribuzione del caldo basato su radiatori.

CONFIGURAZIONE MODULARE

Configurazione modulare con estensione della capacità di sistema fino a 400kW per installazioni di media e grande potenza. Possibilità di frazionamento della potenza termica tra i circuiti di sistema e produzione di acqua calda sanitaria.

APPLICAZIONE TERMINALI IDRONICI

AW-HT / CA-E			0122	0152	0202	0262	0302	
Alimentazione elettrica		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	
RISCALDAMENTO (GROSS VALUE)								
Potenza termica totale	(1)	kW	38,00	51,30	68,80	84,90	102,0	
Potenza assorbita totale	(1)	kW	10,70	14,40	19,40	23,60	27,70	
COP	(1)	kW/kW	3,551	3,562	3,546	3,597	3,682	
RISCALDAMENTO (EN14511 VALUE)								
Potenza termica totale	(1)(2)	kW	38,10	51,40	69,00	85,20	102,3	
COP	(1)(2)	kW/kW	3,530	3,540	3,520	3,570	3,650	
EFFICIENZA ENERGETICA								
EFFICIENZA STAGIONALE IN RISCAL	DAMENTO (Reg. UE 8	13/2013)					
PDesign	(3)	kW	28,4	33,8	47,5	58,5	70,6	
SCOP	(3)(9)		3,12	3,07	3,14	3,20	3,30	
Rendimento ηs	(3)(10)	%	122	120	123	125	129	
Classe di efficienza stagionale	(11)		Α	Α	A+	A+	-	
PDesign	(4)	kW	30,5	36,8	50,7	63,3	74,7	
SCOP	(4)(9)		2,90	2,90	2,95	3,00	3,07	
Rendimento ηs	(4)(10)	%	113	113	115	117	120	
Classe di efficienza stagionale	(12)		A+	A+	A+	A+	-	
SCAMBIATORI								
SCAMBIATORE UTENZA IN RISCALDA	AMENTO							
Portata	(1)	l/s	1,834	2,476	3,321	4,098	4,924	
Perdita di carico allo scambiatore	(1)	kPa	10,2	12,9	14,6	18,3	22,9	
CIRCUITO FRIGORIFERO								
N. compressori		N°	2	2	2	2	2	
N. circuiti		N°	2	2	2	2	2	
Carica refrigerante teorica		kg	13,0	22,0	27,6	35,0	42,0	
LIVELLI SONORI		Ĭ						
Potenza sonora in riscaldamento	(5)(6)	dB(A)	84	86	87	87	87	
Pressione sonora totale	(7)	dB(A)	67	69	70	69	69	
DIMENSIONI E PESI		` '						
A	(8)	mm	1695	2195	2745	2745	2745	
В	(8)	mm	1120	1120	1120	1120	1120	
Н	(8)	mm	1465	1465	1465	1665	1665	
Peso in funzionamento	(8)	kg	510	750	870	940	1030	

Note

- 1
- Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Valori riferiti alla normativa EN14511

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

 Potenza sonora in riscaldamento, outdoors. 4

- 7 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 8 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 9 Coefficiente di prestazione stagionale
 10 Efficienza energetica stagionale del riscaldamento d'ambiente
 11 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 12 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R407C [GWP100 1774] ad effetto serra.

0122 - 0302

APPLICAZIONE PANNELLI RADIANTI

AW-HT / CA-E			0122	0152	0202	0262	0302	
Alimentazione elettrica		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	
RISCALDAMENTO (GROSS VALUE)								
Potenza termica totale	(1)	kW	37,60	50,60	67,90	83,70	100,7	
Potenza assorbita totale	(1)	kW	8,900	12,20	16,30	19,90	23,20	
COP	(1)	kW/kW	4,225	4,148	4,166	4,206	4,341	
RISCALDAMENTO (EN14511 VALUE)								
Potenza termica totale	(1)(2)	kW	37,70	50,70	68,10	84,00	101,0	
COP	(1)(2)	kW/kW	4,190	4,110	4,130	4,170	4,290	
EFFICIENZA ENERGETICA								
EFFICIENZA STAGIONALE IN RISCAL	DAMENTO (Reg. UE 8	13/2013)					
PDesign	(3)	kW	28,4	33,8	47,5	58,5	70,6	
SCOP	(3)(9)		3,12	3,07	3,14	3,20	3,30	
Rendimento ηs	(3)(10)	%	122	120	123	125	129	
Classe di efficienza stagionale	(11)		Α	Α	A+	A+	-	
PDesign	(4)	kW	30,5	36,8	50,7	63,3	74,7	
SCOP	(4)(9)		2,90	2,90	2,95	3,00	3,07	
Rendimento ηs	(4)(10)	%	113	113	115	117	120	
Classe di efficienza stagionale	(12)		A+	A+	A+	A+	-	
SCAMBIATORI								
SCAMBIATORE UTENZA IN RISCALDA	AMENTO							
Portata	(1)	l/s	1,809	2,434	3,267	4,027	4,845	
Perdita di carico allo scambiatore	(1)	kPa	9,97	12,4	14,1	17,7	22,2	
CIRCUITO FRIGORIFERO								
N. compressori		N°	2	2	2	2	2	
N. circuiti		N°	2	2	2	2	2	
Carica refrigerante teorica		kg	13,0	22,0	27,6	35,0	42,0	
LIVELLI SONORI								
Potenza sonora in riscaldamento	(5)(6)	dB(A)	84	86	87	87	87	
Pressione sonora totale	(7)	dB(A)	67	69	70	69	69	
DIMENSIONI E PESI								
A	(8)	mm	1695	2195	2745	2745	2745	
В	(8)	mm	1120	1120	1120	1120	1120	
H	(8)	mm	1465	1465	1465	1665	1665	
Peso in funzionamento	(8)	kg	510	750	870	940	1030	
	. , ,							

Note

- Acqua scambiatore caldo lato utenza (in/out) 30°C/35°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Valori riferiti alla normativa EN14511

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

- 7 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 8 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 9 Coefficiente di prestazione stagionale
 10 Efficienza energetica stagionale del riscaldamento d'ambiente
 11 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 12 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R407C [GWP100 1774] ad effetto serra.

APPLICAZIONE TERMINALI IDRONICI

		0122	0152	0202	0262	0302	
	V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	
(1)	kW	38,40	51,00	69,40	85,80	100,3	
(1)	kW	10,70	14,30	19,40	23,70	27,60	
(1)	kW/kW	3,589	3,566	3,577	3,620	3,634	
(1)(2)	kW	38,50	51,10	69,60	86,10	100,6	
(1)(2)	kW/kW	3,560	3,540	3,550	3,590	3,600	
AMENTO (Reg. UE 8	13/2013)					
(3)	kW	28,7	34,4	47,8	59,3	70,3	
(3)(9)		3,15	3,07	3,17	3,23	3,30	
(3)(10)	%	123	120	124	126	129	
(11)		A+				-	
(4)	kW	30,7	37,0	50,9	63,3	75,2	
(4)(9)		2,92	2,91	2,97	3,00	3,07	
	%		113			120	
(12)		A+	A+	A+	A+	-	
IENTO							
(1)	l/s	1,854	2,462	3,350	4,142	4,842	
(1)	kPa	10,5	12,7	14,8	18,7	22,2	
	N°	2	2	2	2	2	
	N°	2	2	2	2	2	
	kg	15,0	24,3	33,3	42,1	50,0	
(5)(6)	dB(A)	82	84	85	85	86	
(7)	dB(A)	65	67	68	67	68	
(8)	mm	1695	2195	2745	2745	2745	
(8)	mm	1120	1120	1120	1120	1120	
(8)	mm	1465	1465	1465	1665	1665	
(8)	kg	530	760	910	980	1030	
	(1) (1) (1)(2) (1)(2) (1)(2) (3)(9) (3)(10) (3)(10) (11) (4)(9) (4)(10) (12) (1) (1) (1) (5)(6) (7)	(1) kW (1) kW/kW (1) kW/kW (1)(2) kW (1)(2) kW/kW AMENTO (Reg. UE 8 (3) kW (3)(9) (3)(10) % (11) (4) kW (4)(9) (4)(10) % (12) IENTO (1) l/s (1) kPa N° N° kg (5)(6) dB(A) (7) dB(A) (8) mm (8) mm	V/ph/Hz 400/3+N/50	V/ph/Hz 400/3+N/50 400/3+N/50 (1) kW 38,40 51,00 (1) kW 10,70 14,30 (1) kW/kW 3,589 3,566 (1)(2) kW 38,50 51,10 (1)(2) kW/kW 3,560 3,540 AMENTO (Reg. UE 813/2013) (3) kW 28,7 34,4 (3)(9) 3,15 3,07 (3)(10) % 123 120 (11) A+ A A (4)(9) 2,92 2,91 (4)(10) % 114 113 (12) A+ A+ A+ A+ A+ N° 2 2 N° 2 2 N° 2 2 kg 15,0 24,3 (5)(6) dB(A) 82 84 (7) dB(A) 65 67 (8) mm	V/ph/Hz 400/3+N/50 400/3+N/50 400/3+N/50 (1) kW 38,40 51,00 69,40 (1) kW 10,70 14,30 19,40 (1) kW/kW 3,589 3,566 3,577 (1)(2) kW 38,50 51,10 69,60 (1)(2) kW/kW 3,560 3,540 3,550 AMENTO (Reg. UE 813/2013) (3) kW 28,7 34,4 47,8 (3)(9) 3,15 3,07 3,17 (3)(10) % 123 120 124 (11) A+ A A+ (4)(9) 2,92 2,91 2,97 (4)(10) % 114 113 116 (12) A+ A+ A+ A+ A+ A+	V/ph/Hz 400/3+N/50 400/3+N/50 400/3+N/50 400/3+N/50 400/3+N/50 (1) kW 38,40 51,00 69,40 85,80 (1) kW 10,70 14,30 19,40 23,70 (1) kW/kW 3,589 3,566 3,577 3,620 (1)(2) kW 38,50 51,10 69,60 86,10 (1)(2) kW/kW 3,560 3,540 3,550 3,590 AMENTO (Reg. UE 813/2013) (3) kW 28,7 34,4 47,8 59,3 (3)(9) 3,15 3,07 3,17 3,23 (3)(10) % 123 120 124 126 (11) A+ A A+ A+ (4)(9) 2,92 2,91 2,97 3,00 (4)(10) % 114 113 116 117 (1) kPa 10,5 12,7 14,8 18,7 1ENTO <	V/ph/Hz 400/3+N/50 400/3 400/3+N/50 400/3 400/3+N/50 400/3 400/

Note

- 1
- Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Valori riferiti alla normativa EN14511

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

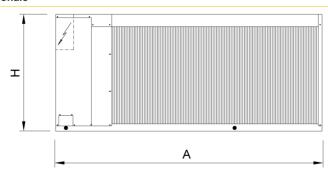
 Potenza sonora in riscaldamento, outdoors. 4

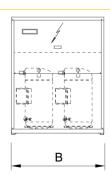
- 7 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 8 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 9 Coefficiente di prestazione stagionale
 10 Efficienza energetica stagionale del riscaldamento d'ambiente
 11 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 12 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

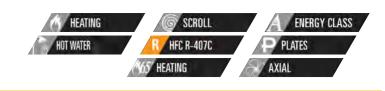
Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R407C [GWP100 1774] ad effetto serra.

APPLICAZIONE PANNELLI RADIANTI

AW-HT / LN-CA-E			0122	0152	0202	0262	0302	
Alimentazione elettrica		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	
RISCALDAMENTO (GROSS VALUE)								
Potenza termica totale	(1)	kW	38,00	50,20	68,50	84,70	99,00	
Potenza assorbita totale	(1)	kW	8,900	12,10	16,30	20,00	23,00	
COP	(1)	kW/kW	4,270	4,149	4,202	4,235	4,304	
RISCALDAMENTO (EN14511 VALUE)								
Potenza termica totale	(1)(2)	kW	38,10	50,30	68,70	85,00	99,30	
COP	(1)(2)	kW/kW	4,230	4,110	4,170	4,190	4,260	
EFFICIENZA ENERGETICA								
EFFICIENZA STAGIONALE IN RISCAL	DAMENTO (Rea. UE 8	13/2013)					
PDesign	(3)	kW	28,7	34,4	47,8	59.3	70.3	
SCOP	(3)(9)		3,15	3,07	3,17	3,23	3,30	
Rendimento ns	(3)(10)	%	123	120	124	126	129	
Classe di efficienza stagionale	(11)		A+	A	A+	A+	-	
PDesign	(4)	kW	30,7	37,0	50,9	63,3	75,2	
SCOP	(4)(9)		2,92	2,91	2,97	3,00	3,07	
Rendimento ηs	(4)(10)	%	114	113	116	117	120	
Classe di efficienza stagionale	(12)		A+	A+	A+	A+	-	
SCAMBIATORI								
SCAMBIATORE UTENZA IN RISCALDA	MENTO							
Portata	(1)	l/s	1,828	2,415	3,296	4,075	4,763	
Perdita di carico allo scambiatore	(1)	kPa	10,2	12,2	14,4	18,1	21,5	
CIRCUITO FRIGORIFERO								
N. compressori		N°	2	2	2	2	2	
N. circuiti		N°	2	2	2	2	2	
Carica refrigerante teorica		kg	15,0	24,3	33,3	42,1	50,0	
LIVELLI SONORI								
Potenza sonora in riscaldamento	(5)(6)	dB(A)	82	84	85	85	86	
Pressione sonora totale	(7)	dB(A)	65	67	68	67	68	
DIMENSIONI E PESI								
A	(8)	mm	1695	2195	2745	2745	2745	
В	(8)	mm	1120	1120	1120	1120	1120	
H	(8)	mm	1465	1465	1465	1665	1665	
Peso in funzionamento	(8)	kg	530	760	910	980	1030	


Note


- 1
- Acqua scambiatore caldo lato utenza (in/out) 30°C/35°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Valori riferiti alla normativa EN14511
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in riscaldamento, outdoors.


- 7 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 8 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 9 Coefficiente di prestazione stagionale
 10 Efficienza energetica stagionale del riscaldamento d'ambiente
 11 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 12 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R407C [GWP100 1774] ad effetto serra.

Disegno dimensionale

La pompa di calore reversibile AW-HT rappresenta la migliore soluzione per impianti di climatizzazione dove è richiesta, unitamente alla capacità di raffrescamento degli ambienti, anche un'alta temperatura dell'acqua calda sia per scopo riscaldamento che per uso sanitario. Il compressore con immissione supplementare di vapore nel ciclo di compressione e tecnologia EVI, garantisce il raggiungimento di temperature dell'acqua fino a 65°C e un ampliamento dei limiti di funzionamento fino a temperature esterne di -20°C. La mancanza di sonde geotermiche o collegamenti a pozzi rende l'installazione semplice e adatta ad ogni applicazione.

W3000SF

Controllore con display LCD dedicato ad applicazioni in pompa di calore con logica integrata per la produzione di acqua calda ad alta temperatura. La gestione delle differenti temperature avviene in modo automatico in base alle diverse condizioni in cui si trova ad operare il sistema, con la possibilità di assegnare dedicati livelli di priorità alla produzione dell'acqua ad uso sanitario a seconda delle diverse esigenze applicative. La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità.

Per sistemi a più unità è possibile effettuare la regolazione delle risorse in modo differenziato al fine di dedicare solo una parte della potenza installata per la produzione di acqua sanitaria, assicurando una più efficiente distribuzione dell'energia e garantendo la contemporaneità di alimentazione dell'acqua nei diversi sistemi di distribuzione. L'orologio integrato permette di creare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia e per la gestione dei cicli anti-legionella. Per lo sbrinamento è impiegata una logica proprietaria di tipo auto-adattativo che monitora i molteplici parametri di funzionamento e ambientali al fine di ridurre il numero e la durata degli sbrinamenti. Supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks.

Una dedicata tastiera per installazione a muro consente infine di assicurare il controllo remoto di tutte le funzioni.

Refrigerante

Versioni

CA-E Versione ad altissima efficienza, oltre la Classe A

LN-CA-E Versione ad altissima efficienza, oltre la Classe A,

silenziata

Configurazioni

- Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

EFFICIENZA IN 'CLASSE A' PREMIUM

Tutta la gamma raggiunge efficienze di molto superiori ai livelli previsti per la classe energetica A. Le unità AW-HT/CA-E e AW-HT/LN-CA-E garantiscono elevati livelli di efficienza oltre che a silenziosità, rendono la gamma la migliore soluzione per ambienti residenziali e commerciali.

ESTESO CAMPO DI FUNZIONAMENTO

Produzione di acqua calda ad uso riscaldamento e in priorità per sanitario fino a 65°C. Funzionamento senza interruzione di operatività fino a -20°C.

MASSIMA AFFIDABILITA

Massima affidabilità di esercizio grazie alle due principali caratteristiche:

- due circuiti indipendenti su tutte le taglie;
- sistema di prevenzione della formazione del ghiaccio in batteria che consente di ottenere cicli di sbrinamento più corti ed efficienti.

ENERGIA RINNOVABILE PER IL SETTORE COMMERCIALE

Ideale nelle riqualificazioni di edifici in caso di sostituzione di caldaie centralizzate a metano o a gasolio, con possibilità di mantenere il preesistente sistema di distribuzione del caldo basato su radiatori.

CONFIGURAZIONE MODULARE

Configurazione modulare con estensione della capacità di sistema fino a 1000 kW per installazioni di media e grande potenza. Possibilità di frazionamento della potenza termica tra i circuiti di sistema e produzione di acqua calda sanitaria.

APPLICAZIONE TERMINALI IDRONICI

AW-HT / CA-E			0404	0524	0604	
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	
RISCALDAMENTO (GROSS VALUE)		•				
Potenza termica totale	(1)	kW	134,9	171,0	204,8	
Potenza assorbita totale	(1)	kW	39,60	48,10	58,90	
COP	(1)	kW/kW	3,407	3,555	3,477	
RISCALDAMENTO (EN14511 VALUE)						
Potenza termica totale	(1)(2)	kW	135,4	171,6	205,5	
COP	(1)(2)	kW/kW	3,380	3,520	3,450	
EFFICIENZA ENERGETICA						
EFFICIENZA STAGIONALE IN RISCALDA	AMENTO (Reg. UE 81	3/2013)			
PDesign	(3)	kW	92,6	117	139	
SCOP	(3)(9)		3,15	3,32	3,22	
Rendimento ηs	(3)(10)	%	123	130	126	
Classe di efficienza stagionale	(11)		-	-	-	
PDesign	(4)	kW	98,9	126	148	
SCOP	(4)(9)		2,95	3,13	3,02	
Rendimento ηs	(4)(10)	%	115	122	118	
Classe di efficienza stagionale	(12)		-	-	-	
SCAMBIATORI						
SCAMBIATORE UTENZA IN RISCALDAN	IENTO					
Portata	(1)	l/s	6,512	8,254	9,886	
Perdita di carico allo scambiatore	(1)	kPa	25,4	28,6	31,3	
CIRCUITO FRIGORIFERO						
N. compressori		N°	4	4	4	
N. circuiti		N°	2	2	2	
Carica refrigerante teorica		kg	66,0	108	108	
LIVELLI SONORI						
Potenza sonora in riscaldamento	(5)(6)	dB(A)	92	93	94	
Pressione sonora totale	(7)	dB(A)	73	73	74	
DIMENSIONI E PESI						
A	(8)	mm	3110	4110	4110	
В	(8)	mm	2220	2220	2220	
Н	(8)	mm	2150	2150	2150	
Peso in funzionamento	(8)	kg	1950	2400	2530	

Note

1

- Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Valori riferiti alla normativa EN14511

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

 Potenza sonora in riscaldamento, outdoors. 4

- 7 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 8 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 9 Coefficiente di prestazione stagionale
 10 Efficienza energetica stagionale del riscaldamento d'ambiente
 11 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 12 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R407C [GWP₁₀₀ 1774] ad effetto serra.

APPLICAZIONE PANNELLI RADIANTI

AW-HT / CA-E			0404	0524	0604	,
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	
RISCALDAMENTO (GROSS VALUE)						
Potenza termica totale	(1)	kW	132,9	168,7	202,2	
Potenza assorbita totale	(1)	kW	33,50	40,70	49,70	
COP	(1)	kW/kW	3,967	4,145	4,068	
RISCALDAMENTO (EN14511 VALUE)						
Potenza termica totale	(1)(2)	kW	133,3	169,3	202,9	
COP	(1)(2)	kW/kW	3,930	4,100	4,030	
EFFICIENZA ENERGETICA						
EFFICIENZA STAGIONALE IN RISCALD	AMENTO (Rea. UE 81	13/2013)			
PDesign	(3)	kW	92,6	117	139	
SCOP	(3)(9)		3,15	3,32	3,22	
Rendimento ns	(3)(10)	%	123	130	126	
Classe di efficienza stagionale	(11)		-	-	-	
PDesign	(4)	kW	98,9	126	148	
SCOP	(4)(9)		2,95	3,13	3,02	
Rendimento ηs	(4)(10)	%	115	122	118	
Classe di efficienza stagionale	(12)		-	-	-	
SCAMBIATORI						
SCAMBIATORE UTENZA IN RISCALDAI	MENTO					
Portata	(1)	l/s	6,394	8,116	9,728	
Perdita di carico allo scambiatore	(1)	kPa	24,5	27,7	30,3	
CIRCUITO FRIGORIFERO						
N. compressori		N°	4	4	4	
N. circuiti		N°	2	2	2	
Carica refrigerante teorica		kg	66,0	108	108	
LIVELLI SONORI						
Potenza sonora in riscaldamento	(5)(6)	dB(A)	92	93	94	
Pressione sonora totale	(7)	dB(A)	73	73	74	
DIMENSIONI E PESI						
A	(8)	mm	3110	4110	4110	
В	(8)	mm	2220	2220	2220	
H	(8)	mm	2150	2150	2150	
Peso in funzionamento	(8)	kg	1950	2400	2530	

Note

- 1
- Acqua scambiatore caldo lato utenza (in/out) 30°C/35°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Valori riferiti alla normativa EN14511

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

 Potenza sonora in riscaldamento, outdoors.

- 7 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 8 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 9 Coefficiente di prestazione stagionale
 10 Efficienza energetica stagionale del riscaldamento d'ambiente
 11 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 12 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R407C [GWP₁₀₀ 1774] ad effetto serra.

APPLICAZIONE TERMINALI IDRONICI

			0404	0524	0604
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50
RISCALDAMENTO (GROSS VALUE)					
Potenza termica totale	(1)	kW	134,9	171,0	204,8
Potenza assorbita totale	(1)	kW	39,60	48,10	58,90
COP	(1)	kW/kW	3,407	3,555	3,477
RISCALDAMENTO (EN14511 VALUE)					
Potenza termica totale	(1)(2)	kW	135,4	171,6	205,5
COP	(1)(2)	kW/kW	3,380	3,520	3,450
EFFICIENZA ENERGETICA					
EFFICIENZA STAGIONALE IN RISCALI	DAMENTO (Reg. UE 81	13/2013)		
PDesign	(3)	kW	92,6	117	139
SCOP	(3)(9)		3,15	3,32	3,22
Rendimento ηs	(3)(10)	%	123	130	126
Classe di efficienza stagionale	(11)		-	-	-
PDesign	(4)	kW	98,9	126	148
SCOP	(4)(9)		2,95	3,13	3,02
Rendimento ηs	(4)(10)	%	115	122	118
Classe di efficienza stagionale	(12)		-	-	-
SCAMBIATORI					
SCAMBIATORE UTENZA IN RISCALDA	MENTO				
Portata	(1)	l/s	6,512	8,254	9,886
Perdita di carico allo scambiatore	(1)	kPa	25,4	28,6	31,3
CIRCUITO FRIGORIFERO					
N. compressori		N°	4	4	4
N. circuiti		N°	2	2	2
Carica refrigerante teorica		kg	70,0	110	110
LIVELLI SONORI					
Potenza sonora in riscaldamento	(5)(6)	dB(A)	88	88	89
Pressione sonora totale	(7)	dB(A)	69	68	69
DIMENSIONI E PESI					
A	(8)	mm	3110	4110	4110
В	(8)	mm	2220	2220	2220
Н	(8)	mm	2150	2150	2150
Peso in funzionamento	(8)	kg	1960	2410	2540

Note

- 1
- Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.

 Valori riferiti alla normativa EN14511

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.

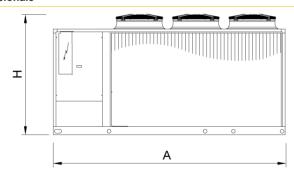
 Potenza sonora in riscaldamento, outdoors. 4

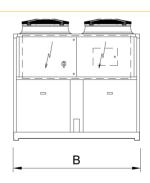
- 7 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 8 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 9 Coefficiente di prestazione stagionale
 10 Efficienza energetica stagionale del riscaldamento d'ambiente
 11 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 12 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

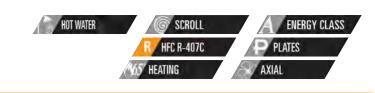
Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R407C [GWP₁₀₀ 1774] ad effetto serra.

APPLICAZIONE PANNELLI RADIANTI

Alimentazione elettrica V/ph/Hz 400/3/50 400/3/50 400/3/50 RISCALDAMENTO (GROSS VALUE) Potenza termica totale (1) kW 132,9 168,7 202,2 Potenza assorbita totale (1) kW 33,50 40,70 49,70 COP (1) kW/kW 3,967 4,145 4,068 RISCALDAMENTO (EN14511 VALUE)
RISCALDAMENTO (GROSS VALUE) Potenza termica totale (1) kW 132,9 168,7 202,2 Potenza assorbita totale (1) kW 33,50 40,70 49,70 COP (1) kW/kW 3,967 4,145 4,068 RISCALDAMENTO (EN14511 VALUE)
Potenza termica totale (1) kW 132,9 168,7 202,2 Potenza assorbita totale (1) kW 33,50 40,70 49,70 COP (1) kW/kW 3,967 4,145 4,068 RISCALDAMENTO (EN14511 VALUE)
Potenza assorbita totale (1) kW 33,50 40,70 49,70 COP (1) kW/kW 3,967 4,145 4,068 RISCALDAMENTO (EN14511 VALUE)
COP (1) kW/kW 3,967 4,145 4,068 RISCALDAMENTO (EN14511 VALUE)
RISCALDAMENTO (EN14511 VALUE)
Potenza termica totale (1)(2) kW 133,3 169,3 202,9
COP (1)(2) kW/kW 3.930 4.100 4.030
EFFICIENZA ENERGETICA
EFFICIENZA STAGIONALE IN RISCALDAMENTO (Reg. UE 813/2013)
PDesign (3) kW 92,6 117 139
SCOP (3)(9) 3,15 3,32 3,22
Rendimento ηs (3)(10) % 123 130 126
Classe di efficienza stagionale (11)
PDesign (4) kW 98,9 126 148
SCOP (4)(9) 2,95 3,13 3,02
Rendimento ηs (4)(10) % 115 122 118
Classe di efficienza stagionale (12)
SCAMBIATORI
SCAMBIATORE UTENZA IN RISCALDAMENTO
Portata (1) I/s 6,394 8,116 9,728
Perdita di carico allo scambiatore (1) kPa 24,5 27,7 30,3
CIRCUITO FRIGORIFERO
N. compressori N° 4 4 4
N. circuiti N° 2 2 2
Carica refrigerante teorica kg 70,0 110 110
LIVELLI SONORI
Potenza sonora in riscaldamento (5)(6) dB(A) 88 88 89
Pressione sonora totale (7) dB(A) 69 68 69
DIMENSIONI E PESI
A (8) mm 3110 4110 4110
B (8) mm 2220 2220 2220
H (8) mm 2150 2150 2150
Peso in funzionamento (8) kg 1960 2410 2540


Note


1


- Acqua scambiatore caldo lato utenza (in/out) 30°C/35°C; Aria scambiatore lato sorgente (in) 7°C U.R. 87%.
 Valori riferiti alla normativa EN14511
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in riscaldamento, outdoors.

- 7 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
 8 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 9 Coefficiente di prestazione stagionale
 10 Efficienza energetica stagionale del riscaldamento d'ambiente
 11 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]
 12 Classe di efficienza energetica per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R407C [GWP₁₀₀ 1774] ad effetto serra.

Unità da interno per la produzione di acqua refrigerata/riscaldata con sorgente acqua, compressori ermetici rotativi di tipo Scroll, scambiatori a piastre saldo-brasate e valvola di espansione elettronica di serie. Basamento, struttura e pannellatura in lamiera di acciaio zincato a caldo di adeguato spessore. Verniciatura di tutte le parti con polveri poliesteri che assicura una totale resistenza agli agenti atmosferici, verniciatura RAL 7035.

La gamma comprende le versioni a due compressori monocircuito e le versioni con quattro compressori suddivisi in due circuiti.

Comando

Controllore elettronico W3000TE

Tastiera Compact con display LCD per la gestione dell'unità mediante menu multi-livello. La termoregolazione prevede il controllo della temperatura acqua ad uso impianto per riscaldamento/raffrescamento e dell'acqua ad uso sanitario (solo per unità reversibili). Il controllo delle temperature è automatico in base alle diverse condizioni, con possibilità di assegnare dedicati livelli di priorità alla produzione dell'acqua sanitaria. La termoregolazione si basa sull'esclusivo algoritmo Quick- Mind, dotato di logiche autoadattative, utili nei sistemi con ridotto contenuto d'acqua. In alternativa sono impostabili regolazioni proporzionale o proporzionale-integrale. La diagnostica comprende la gestione degli allarmi, con funzioni "black box" e storico allarmi per una migliore analisi del comportamento dell'unità.

Per sistemi a più unità è possibile regolare le risorse in modo differenziato, parzializzando la potenza installata per produrre acqua sanitaria, per una più efficiente distribuzione dell'energia e garantire la contemporaneità di alimentazione dell'acqua nei diversi sistemi di distribuzione. Possibile creare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie, indispensabile per una produzione efficiente dell'energia e per gestione dei cicli anti-legionella. Disponibile la programmazione fasce orarie anche per la produzione dell'acqua calda sanitaria. La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks. Una dedicata tastiera per installazione a muro assicura il controllo remoto di tutte le funzioni. Come opzione (pacchetto VPF), viene integrata la modulazione della capacità con la regolazione della portata idraulica, tramite pompe inverter e risorse dedicate per il circuito idraulico

Refrigerante

Versioni

- Base

Configurazioni

- Funzione base

Caratteristiche

ELEVATA EFFICIENZA

Elevata efficienza a carico pieno e parziale, ai migliori livelli di mercato. Queste unità garantiscono bassi costi di esercizio e quindi un rapido ritorno dell'investimento.

ErP READY

Le elevatissime efficienze ai carichi parziali consentono di soddisfare e superare le efficienze stagionali per il riscaldamento SCOP (solo per unità reversibili) e per il raffreddamento SEER, definite dalle direttive per la progettazione ecosostenibile. Superando anche i requisiti minimi di efficienza energetica stagionale richiesti a partire dal 2021.

PORTATA ACQUA VARIABILE (OPTION)

Regolare correttamente la velocità delle pompe comandate da inverter a seconda del carico richiesto dall'impianto, consente di ridurre i consumi elettrici e garantire il funzionamento dell'unità anche in condizioni critiche. Opzione VPF (Variable Primary Flow) disponibile per taglie 0604-1204.

MASSIMA SILENZIOSITA'

Elevata silenziosità abbinata ad un'alta efficienza, grazie ad accorgimenti acustici dedicati e ad una progettazione mirata nella scelta dei componenti.

GRUPPO IDRONICO INTEGRATO

L'opzione gruppo idronico integrato racchiude in sé i principali componenti idraulici; è disponibile in diverse configurazioni con pompa in-line singola o gemellare, bassa prevalenza, a velocità fissa o variabile, disponibile per il lato utenza e sorgente (fino ad un massimo di 4 pompe installate).

CONTROLLO INTEGRATO DELLA CONDENSAZIONE

L'elettronica delle unità è in grado di gestire il controllo della condensazione più adatto per ogni tipologia di applicazione: valvola pressostatica, valvola modulante a due o tre vie, segnale 0-10V per controllo pompe con inverter.

COMPLETA VERSATILITA'

Unità progettate prevedendo una serie di accessori integrati per il funzionamento con acqua a perdere (pozzo, falda, ecc.), dry cooler o torre evaporativa e per sonde geotermiche in grado così di soddisfare ogni esigenza impiantistica.

VALVOLA DI ESPANSIONE ELETTRONICA DI SERIE

La valvola di espansione elettronica migliora l'efficienza dell'unità, soprattutto in presenza di variabilità di carico e di temperatura della sorgente. Tutto ciò si traduce in una riduzione dei consumi, una rapida messa a regime e un' estensione dei limiti operativi.

- Tastiera interfaccia Touch Screen
- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet
- Sonda aria esterna per compensazione setpoint acqua impianto
- · Cofanatura integrale (tipologia base)
- Rivestimento insonorizzante maggiorato
- Kit idronico lato sorgente e lato utenza disponibile in diverse configurazioni
- Sistema VPF (Variable Primary Flow)
- Dispositivo controllo della condensazione: valvola pressostatica, modulante a due-tre vie ed inverter

NX-WN			0122	0152	0182	0202	0252	0262	0302	0352
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI										
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	37.48	46.65	54.98	63.93	70.84	80.47	94.59	108.8
Potenza assorbita totale	(1)	kW	7.728	9.524	11.05	12.87	14.09	16.33	19.25	22.13
EER	(1)	kW/kW	4,851	4,905	4,955	4,953	5,021	4,939	4,927	4,923
REFRIGERAZIONE (EN14511 VALUE)	. ,		.,	.,	.,	.,	-,	.,	-,	-,
Potenza frigorifera	(1)(2)	kW	37,40	46,60	54,80	63,70	70,60	80,30	94,40	108,5
EER	(1)(2)	kW/kW	4,670	4,720	4,780	4,780	4,850	4,770	4,770	4,760
Classe EUROVENT	(-//-/	1000/1000	-	-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)										
Potenza termica totale	(3)	kW	41.81	52.11	61.18	71.49	78.57	89.53	105.3	120.9
Potenza assorbita totale	(3)	kW	9,692	11,90	13,71	16,04	17,74	20,25	23,69	27,23
COP	(0)	kW/kW	4,314	4,378	4,467	4,469	4,441	4,409	4,443	4,445
RISCALDAMENTO (EN14511 VALUE)		KVV/KVV	4,014	4,570	4,407	4,403	7,771	4,403	+,++0	4,440
Potenza termica totale	(3)(2)	kW	41,90	52,30	61,40	71,70	78,80	89,80	105,6	121,2
COP	(3)(2)	kW/kW	4.160	4.220			4.290			
~ ~ .	(3)(2)	KVV/KVV	4,160	4,220	4,310	4,320	4,290	4,270	4,300	4,310
Classe EUROVENT										
EFFICIENZA ENERGETICA										
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente										
Prated,c	(11)	kW	-	-	-	-	-	-	-	-
SEER	(11)(12)		-	-	-	-	-	-	-	-
Rendimento ηs	(11)(13)	%	-	-	-	-	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA	AMENTO (Reg. UE 8	313/2013)							
PDesign	(4)	kW	50,4	62,6	73,6	85,6	94,8	108	127	146
SCOP	(4)(14)		5,64	5,95	5,89	5,92	6,07	5,89	5,94	6,00
Rendimento ηs	(4)(15)	%	218	230	228	229	235	227	230	232
Classe di efficienza stagionale	(4)		A+++	A+++	A+++	-	-	-	-	-
PDesign	(5)	kW	45,4	56,7	66,4	78,1	85,4	97,0	114	131
SCOP	(5)(14)		4,50	4,58	4,64	4,64	4,67	4,62	4,64	4,69
Rendimento ηs	(5)(15)	%	172	175	178	178	179	177	178	179
Classe di efficienza stagionale	(5)		A+++	A+++	A+++	-	-	-	-	-
SCAMBIATORI										
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE									
Portata	(1)	l/s	1.792	2.231	2.629	3.057	3.388	3.848	4.523	5.202
Perdita di carico allo scambiatore	(1)	kPa	12,3	13,1	13,3	13,7	14,1	14,6	14,7	15,5
SCAMBIATORE UTENZA IN RISCALDAN	. ,	in a	12,0	10,1	10,0	10,7	, .	11,0	,,	10,0
SCAMBIATORE OTENZA IN RISCALDAM Portata	(3)	l/s	2.018	2,516	2,953	3,451	3,793	4,322	5,085	5,834
Perdita di carico allo scambiatore	(3)	kPa	15,6	16,7	16,8	17,5	17,7	18,4	18,6	19,5
			15,6	10,7	10,0	17,5	17,7	10,4	10,0	19,5
SCAMBIATORE SORGENTE IN REFRIGE			0.450	0.075	0.445	0.050	4.045	4.040	5 404	0.005
Portata	(1)	I/s	2,153	2,675	3,145	3,658	4,045	4,610	5,421	6,235
Perdita di carico allo scambiatore	(1)	kPa	17,7	18,9	19,1	19,7	20,1	21,0	21,1	22,2
SCAMBIATORE SORGENTE IN RISCALD										
Portata	(3)	l/s	2,606	3,262	3,848	4,495	4,932	5,617	6,620	7,592
Perdita di carico allo scambiatore	(3)	kPa	26,0	28,0	28,5	29,7	29,9	31,2	31,5	32,9
CIRCUITO FRIGORIFERO										
N. compressori		N°	2	2	2	2	2	2	2	2
N. circuiti		N°	1	1	1	1	1	1	1	1
Carica refrigerante teorica		kg	3,80	4,20	5,20	5,50	6,70	8,00	9,60	11,0
LIVELLI SONORI										
Pressione sonora totale	(6)	dB(A)	57	57	58	58	58	59	60	60
Potenza sonora totale in refrigerazione	(7)(8)	dB(A)	73	73	74	74	74	75	76	77
Potenza sonora in riscaldamento	(7)(9)	dB(A)	74	74	75	75	75	76	77	78
DIMENSIONI E PESI	. , , ,	,								
A	(10)	mm	1225	1225	1225	1225	1225	1225	1225	1570
В	(10)	mm	885	885	885	885	885	885	885	885
В Н	(10)	mm	1495	1495	1495	1495	1495	1495	1495	1805
п Peso in funzionamento	(10)		390	400	430	440	480	500	540	680
F 630 III IUIIZIONAINENIO	(10)	kg	390	400	430	440	400	300	540	000

- 1
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 10°C/7°C; Acqua scambiatore lato sorgente (in/out) 40°C/45°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente

NX-WN			0402	0452	0502	0552	0602	0702	0802	0604
Alimentazione elettrica		V/ph/Hz		400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI		.,,	100,0,0							
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	123,2	138.5	153,9	176,9	199.7	225,0	251,9	187.2
Potenza assorbita totale	(1)	kW	24,92	28,24	31,51	35,92	40.40	46,17	52,08	39,19
EER	(1)	kW/kW	4,948	4,911	4,886	4,928	4,943	4,870	4,835	4,776
REFRIGERAZIONE (EN14511 VALUE)	. ,		.,	.,	.,	.,	.,	.,	.,	.,
Potenza frigorifera	(1)(2)	kW	122.9	138.2	153.5	176.5	199.2	224.4	251.2	186.8
EER	(1)(2)	kW/kW	4,790	4,760	4,740	4,780	4,790	4,700	4.660	4,660
Classe EUROVENT	. , , ,		-	-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)										
Potenza termica totale	(3)	kW	136,5	154,0	171,5	196,7	221,6	250,8	281,3	208,4
Potenza assorbita totale	(3)	kW	30,66	34,75	38,77	44,14	49,60	56,35	63,24	47,91
COP		kW/kW	4,446	4,438	4,420	4,460	4,468	4,447	4,451	4,351
RISCALDAMENTO (EN14511 VALUE)					,	,	,	,	,	
Potenza termica totale	(3)(2)	kW	136.9	154.4	172.0	197.2	222.2	251.6	282.3	208,9
COP	(3)(2)	kW/kW	4,310	4,310	4,290	4,330	4,330	4,290	4,280	4,250
Classe EUROVENT	. ,, ,				,	,	,	,	,	,
EFFICIENZA ENERGETICA										
EFFICIENZA STAGIONALE IN RAFFREDE	AMENTO	(Rea. UF	2016/2281)						
Refrigerazione d'ambiente		,		,						
Prated,c	(11)	kW	_	_	_	_	_	_	_	_
SEER	(11)(12)	1744	_	-	-	-	-	-	-	
Rendimento ηs	(11)(13)	%	-	-	-	-	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA			13/2013)							
PDesign	(4)	kW	165	186	207	237	268	302	337	251
SCOP	(4)(14)		5.93	5.97	5.91	5.95	5.96	5.87	5.70	6.05
Rendimento ns	(4)(15)	%	229	231	229	230	230	227	220	234
Classe di efficienza stagionale	(4)	,,,	-	-	-	-	-		-	-
PDesign	(5)	kW	148	167	186	213	240	272	306	226
SCOP	(5)(14)		4,67	4,70	4,65	4,72	4,70	4,71	4,60	4,71
Rendimento ηs	(5)(15)	%	179	180	178	181	180	181	176	180
Classe di efficienza stagionale	(5)		-	-	-	-	-	-	-	-
SCAMBIATORI										
SCAMBIATORE UTENZA IN REFRIGERAZ	ZIONE									
Portata	(1)	l/s	5,893	6,622	7,359	8,461	9,551	10,76	12,04	8,952
Perdita di carico allo scambiatore	(1)	kPa	15,7	16,2	16,8	17,9	19,6	24,9	28,6	13,4
SCAMBIATORE UTENZA IN RISCALDAM			-,	-,	-,-	,-	-,-	,-	-,-	-,
Portata	(3)	l/s	6.591	7.433	8.280	9.493	10.70	12.11	13.58	10.06
Perdita di carico allo scambiatore	(3)	kPa	19.6	20.4	21.3	22.5	24.6	31.5	36.3	16.9
SCAMBIATORE SORGENTE IN REFRIGE			,.	, -	,-	,-	,-	- 1,-	,-	, .
Portata	(1)	l/s	7.056	7.940	8.829	10.14	11.44	12.91	14.47	10.78
Perdita di carico allo scambiatore	(1)	kPa	22,5	23,3	24,2	25,7	28,1	35,9	41,3	19,4
SCAMBIATORE SORGENTE IN RISCALD			,-		,_	,-	,	,-	,-	, .
Portata	(3)	l/s	8.583	9.668	10.76	12,37	13.95	15.77	17.68	13.02
Perdita di carico allo scambiatore	(3)	kPa	33,3	34,5	36,0	38,2	41,8	53,5	61,6	28,3
CIRCUITO FRIGORIFERO	(-/	и	00,0	0.,0	00,0	00,2	, 5	00,0	0.,0	20,0
N. compressori		N°	2	2	2	2	2	2	2	4
N. circuiti		N°	1	1	1	1	1	1	1	2
Carica refrigerante teorica		kg	12,5	13.9	14.8	18.1	21.4	21.9	22.0	20.0
LIVELLI SONORI		···9	,0	. 5,5	. 1,0	. 5, 1	, .	_ ,,0	,0	_5,5
Pressione sonora totale	(6)	dB(A)	60	61	61	62	62	65	66	69
Potenza sonora totale in refrigerazione	(7)(8)	dB(A)	77	78	78	79	79	82	83	86
Potenza sonora in riscaldamento	(7)(9)	dB(A)	78	79	79	80	80	83	84	87
DIMENSIONI E PESI	(. //2)	GD(, t)	7.0						0.1	0,
A	(10)	mm	1570	1570	1570	1570	1570	1570	1570	2210
В	(10)	mm	885	885	885	885	885	885	885	885
H	(10)	mm	1805	1805	1805	1805	1805	1805	1805	1805
Peso in funzionamento	(10)	kg	760	810	850	890	930	950	970	920
	(/	g	. 50	0.10					57.0	020

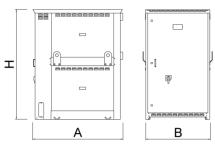
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 10°C/7°C; Acqua scambiatore lato sorgente (in/out) 40°C/45°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche

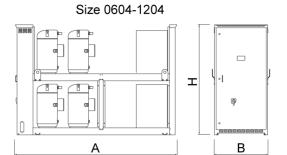
- Parametro calcolato per applicazione a BASSA TEMPERATATRA III CONDIZIONI climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie
 riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente

NX-WN			0704	0804	0904	1004	1104	1204
Alimentazione elettrica		V/ph/Hz		400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI		-, -, ,					.00,0,00	
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	215.5	244.1	274.7	305.6	351.3	396.2
Potenza ingoniera Potenza assorbita totale	(1)	kW	44,95	50,66	57,25	63,76	72,67	81,89
EER	(1)	kW/kW	44,95	4,815	4,802	4,790	4,832	4,838
	(1)	KVV/KVV	4,709	4,013	4,002	4,790	4,032	4,030
REFRIGERAZIONE (EN14511 VALUE)	(1)(2)	1,\\\	015.1	242.6	074.4	204.0	250.5	20F 2
Potenza frigorifera	(1)(2)	kW	215,1	243,6	274,1	304,9	350,5	395,2
EER	(1)(2)	kW/kW	4,670	4,700	4,670	4,650	4,680	4,680
Classe EUROVENT			-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)	(2)	1.1.1.7	000.0	070.4	205.4	240.4	200.0	400.4
Potenza termica totale	(3)	kW	239,3	270,4	305,1	340,1	389,8	439,1
Potenza assorbita totale	(3)	kW/kW	54,99	61,99	70,05	78,01	88,80	99,95
		KVV/KVV	4,351	4,361	4,352	4,360	4,390	4,395
RISCALDAMENTO (EN14511 VALUE)	(0)(0)	114/	000.0	074.0	005.0	0.44.0	000.0	440.4
Potenza termica totale	(3)(2)	kW	239,8	271,0	305,9	341,0	390,9	440,4
COP	(3)(2)	kW/kW	4,250	4,260	4,240	4,230	4,250	4,240
Classe EUROVENT								
FFICIENZA ENERGETICA								
FFICIENZA STAGIONALE IN RAFFREDD	AMENTO	(Reg. UE	2016/2281)				
Refrigerazione d'ambiente								
Prated,c	(11)	kW	-	-	-	-	350	395
BEER	(11)(12)		-	-	-	-	5,69	5,63
Rendimento ηs	(11)(13)	%	-	-	-	-	225	222
FFICIENZA STAGIONALE IN RISCALDAN								
PDesign	(4)	kW	289	327	368	410	-	-
SCOP	(4)(14)		6,04	6,07	6,02	5,90	-	-
Rendimento ns	(4)(15)	%	234	235	233	228	-	-
Classe di efficienza stagionale	(4)		-	-	-	-	-	-
PDesign	(5)	kW	259	293	331	369	-	-
SCOP	(5)(14)		4,69	4,76	4,78	4,72	-	-
lendimento ηs	(5)(15)	%	180	182	183	181	-	-
lasse di efficienza stagionale	(5)		-	-	-	-	-	-
CAMBIATORI								
SCAMBIATORE UTENZA IN REFRIGERAZI								
Portata	(1)	I/s	10,30	11,67	13,14	14,62	16,80	18,94
Perdita di carico allo scambiatore	(1)	kPa	14,4	15,4	18,9	21,7	24,6	28,8
SCAMBIATORE UTENZA IN RISCALDAME								
Portata	(3)	I/s	11,55	13,05	14,73	16,42	18,82	21,20
Perdita di carico allo scambiatore	(3)	kPa	18,2	19,3	23,8	27,4	30,8	36,0
CAMBIATORE SORGENTE IN REFRIGER								
Portata	(1)	I/s	12,40	14,03	15,80	17,59	20,19	22,76
Perdita di carico allo scambiatore	(1)	kPa	20,9	22,3	27,4	31,4	35,5	41,6
CAMBIATORE SORGENTE IN RISCALDA								
Portata	(3)	l/s	14,95	16,90	19,06	21,25	24,41	27,50
erdita di carico allo scambiatore	(3)	kPa	30,4	32,4	39,9	45,9	51,9	60,7
IRCUITO FRIGORIFERO								
I. compressori		N°	4	4	4	4	4	4
I. circuiti		N°	2	2	2	2	2	2
arica refrigerante teorica		kg	26,0	27,5	33,3	36,2	42,5	48,7
IVELLI SONORI								
	(6)	dB(A)	70	71	72	73	74	74
ressione sonora totale				88	89	90	91	91
	(7)(8)	dB(A)	87	00	00	30		
otenza sonora totale in refrigerazione		dB(A)	88	89	90	91	92	92
otenza sonora totale in refrigerazione otenza sonora in riscaldamento	(7)(8)							92
Potenza sonora totale in refrigerazione Potenza sonora in riscaldamento DIMENSIONI E PESI	(7)(8)							92
Pressione sonora totale Potenza sonora totale in refrigerazione Potenza sonora in riscaldamento DIMENSIONI E PESI A 3	(7)(8) (7)(9)	dB(A)	88	89	90	91 2650	92	
Potenza sonora totale in refrigerazione Potenza sonora in riscaldamento DIMENSIONI E PESI	(7)(8) (7)(9) (10)	dB(A)	88 2210	89 2650	90 2650	91	92 2650	2650

- 1
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 10°C/7°C; Acqua scambiatore lato sorgente (in/out) 40°C/45°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]


 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente


Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R410A [GWP100 2088] ad effetto serra.

Dati certificati in EUROVENT

Pompe di calore con condensazione ad acqua ottimizzate per il riscaldamento, alta temperatura

La pompa di calore dedicata al riscaldamento WW(H)-HT rappresenta la migliore soluzione per impianti dove è richiesta produzione di acqua calda ad alta temperatura, sia per il riscaldamento che per uso sanitario. Lo speciale compressore utilizzato garantisce la produzione di acqua fino a 65°C.

La versione WW-HT solo riscaldamento oppure la versione WWH-HT, reversibile lato idrico, permettono di soddisfare in modo completo qualunque esigenza impiantistica ed applicativa grazie ad un'ampia gamma di modelli, configurazioni idroniche e accessori. La nuova gamma WW(H)-HT soddisfa installazioni in ambito commerciale (uffici, hotel) residenziale (abitazione, appartamenti) o industriale (produzione di sola acqua calda ad uso sanitario).

Comando

Controllore elettronico W3000TE

Controllore con display LCD dedicato per applicazioni in pompa di calore con logica integrata per la produzione di acqua calda ad alta e altissima temperatura per uso sanitario. La gestione delle differenti temperature avviene in modo automatico in base alle diverse condizioni in cui si trova ad operare il sistema, con la possibilità di assegnare dedicati livelli di priorità alla produzione dell'acqua ad uso sanitario a seconda delle diverse esigenze applicative. Completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi comportamento dell'unità. Per sistemi a più unità è possibile effettuare la regolazione delle risorse in modo differenziato al fine di dedicare solo una parte della potenza installata per la produzione di acqua sanitaria, assicurando una più efficiente distribuzione dell'energia e garantendo la contemporaneità di alimentazione dell'acqua nei diversi sistemi di distribuzione. L'orologio integrato permette di creare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia e per la gestione dei cicli anti-legionella. Supervisione realizzabile tramite diverse opzioni, con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks. Una dedicata tastiera per installazione a muro assicura il controllo remoto di tutte le funzioni.

Refrigerante

Versioni

B Base

Configurazioni

- Funzione base

H Funzione pompa di calore con reversibilità lato idraulico

Caratteristiche

GAS REFRIGERANTE R410A

L'utilizzo dell'R410A ha permesso di ottenere unità con migliori efficienze energetiche nel pieno rispetto dell'ambiente (O.D.P. = 0)

VALVOLA DI ESPANSIONE ELETTRONICA DI SERIE

L'utilizzo delle valvola di espansione elettronica apporta notevoli benefici specie in presenza di variabilità di carico e nelle diverse condizioni esterne. La sua introduzione su questa unità è conseguente alle accurate scelte progettuali inerenti alla circuitazione frigorifera e l'ottimizzazione del funzionamento in molteplici condizioni operative.

ESTESO CAMPO DI FUNZIONAMENTO

Produzione di acqua calda ad uso riscaldamento e in priorità per uso sanitario fino a 65°C.

UNITA' IMPILABILI

La speciale struttura è progettata per sovrapporre due unità (prive di pompe a bordo) senza alcun accessorio aggiuntivo, riducendo lo spazio necessario, permettendo di aumentare la capacità del sistema. La potenza di due pompe di calore con le dimensioni in pianta di una sola.

GRUPPO IDRONICO INTEGRATO

L'unità può essere fornita con kit idronico lato utenza e/o kit idronico lato sorgente. Il kit comprende tutti i componenti idraulici che consentono di ottimizzare gli spazi, tempi e costi di installazione.

L'ampia disponibilità di pompe selezionabili sia per il lato utenza che lato sorgente, fino a 13 differenti modelli, permette di garantire sempre la migliore soluzione in portata, prevalenza utile e assorbimento.

CONTROLLO INTEGRATO DELLA CONDENSAZIONE

L'elettronica delle unità è in grado di gestire il controllo della condensazione più adatto per ogni tipologia di applicazione: valvola modulante a due vie, controllo inverter per le pompe.

ENERGIA RINNOVABILE PER IL SETTORE COMMERCIALE

Ideale nelle riqualificazioni di edifici in caso di sostituzione di caldaie centralizzate a metano o a gasolio, con possibilità di mantenere il preesistente sistema di distribuzione del caldo basato su radiatori.

CONFIGURAZIONE MODULARE

Configurazione modulare con estensione della capacità di sistema fino a 400kW per installazioni di media e grande potenza. Possibilità di frazionamento della potenza termica tra i circuiti di sistema e produzione di acqua calda sanitaria.

- Soft start
- Unità Impilabili
- Kit idronico lato sorgente e lato utenze (n°13 pompe singole e n°13 pompe gemellari)
- Predisposizione delle connessioni idriche su lato destro, verso l'alto o posteriore.
- Rivestimento insonorizzante maggiorato.
- Sonda aria esterna per compensazione setpoint acqua impianto
- Valvola deviatrice a 3 vie per produzione acqua calda sanitaria
- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet

WWH-HT			0071	0091	0101	0121	0131	0151
limentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
otenza frigorifera	(1)	kW	23,63	28.01	32,00	36,56	41.30	47,10
otenza assorbita totale	(1)	kW	5,220	6.220	6.856	7.856	8,679	10.11
ER	(1)	kW/kW	4,521	4,502	4,665	4,656	4,758	4,663
EFRIGERAZIONE (EN14511 VALUE)		,	.,02.	.,002	.,000	.,000	.,. 00	.,000
otenza frigorifera	(1)(2)	kW	23,50	27,90	31,90	36,40	41.10	46,90
ER	(1)(2)	kW/kW	4,330	4,320	4,470	4,470	4,560	4,480
Classe EUROVENT	(· /(=)	10071000	-	-,020	-,-10	-	-	-,400
RISCALDAMENTO (GROSS VALUE)								
otenza termica totale	(3)	kW	27,52	32,84	37,04	42,58	47,79	54,59
otenza assorbita totale	(3)	kW	6,200	7,331	8.149	9.330	10.39	11,87
OP	(0)	kW/kW	4,435	4,475	4,540	4,566	4,596	4,588
ISCALDAMENTO (EN14511 VALUE)		100071000	1, 100	1,170	1,010	1,000	1,000	1,000
otenza termica totale	(3)(2)	kW	27,60	32,90	37,10	42,70	48,00	54,80
OP	(3)(2)	kW/kW	4,210	4,260	4,320	4,340	4,380	4,380
lasse EUROVENT	(0)(2)	IX V V / IX V V	7,210	7,200	7,020	4,040	4,000	4,000
FFICIENZA ENERGETICA								
	DAMENTA	(Doc III	2046/2204\					
FFICIENZA STAGIONALE IN RAFFREDI	DAIVIENTO	(Reg. UE	2010/2281)					
efrigerazione d'ambiente	(44)	1.107						
rated,c	(11)	kW	-	-	-	-	-	-
EER	(11)(12)	0/	<u>-</u>	<u>-</u>	-	<u>-</u>	<u>-</u>	-
endimento ηs	(11)(13)	%		-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA								
Design	(4)	kW	32,5	38,7	43,9	50,1	56,5	64,7
COP	(4)(14)	0/	5,12	5,07	5,26	5,23	5,34	5,24
endimento ηs	(4)(15)	%	197	195	202	201	206	202
lasse di efficienza stagionale	(4)		A+++	A+++	A+++	A+++	A+++	A+++
Design COP	(5)	kW	30,1	36,0	40,4	46,6	52,2	59,6
~ ~ .	(5)(14)	%	4,12	4,15	4,22	4,25	4,26	4,24
endimento ηs	(5)(15)	%	157	158	161	162	162	162
lasse di efficienza stagionale	(5)		A+++	A+++	A+++	A+++	A+++	A+++
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA								
Portata	(1)	l/s	1,130	1,340	1,530	1,748	1,975	2,252
erdita di carico allo scambiatore	(1)	kPa	18,0	18,5	18,6	19,3	19,4	18,6
CAMBIATORE UTENZA IN RISCALDAM								
ortata	(3)	l/s	1,728	2,068	2,341	2,694	3,029	3,460
erdita di carico allo scambiatore	(3)	kPa	42,2	44,0	43,5	45,8	45,7	44,0
CAMBIATORE SORGENTE IN REFRIGE	RAZIONE							
ortata	(1)	l/s	1,373	1,629	1,850	2,114	2,379	2,723
erdita di carico allo scambiatore	(1)	kPa	11,9	12,4	14,0	14,8	16,2	17,6
CAMBIATORE SORGENTE IN RISCALD	AMENTO							
ortata	(3)	l/s	1,328	1,585	1,788	2,055	2,307	2,635
erdita di carico allo scambiatore	(3)	kPa	11,2	11,7	13,1	14,0	15,2	16,5
IRCUITO FRIGORIFERO								
. compressori		N°	1	1	1	1	1	1
. circuiti		N°	1	1	1	1	1	1
arica refrigerante teorica		kg	2,80	3,30	3,70	4,30	4,90	5,50
VELLI SÖNORI		ŭ						
ressione sonora totale	(6)	dB(A)	51	52	53	54	55	55
otenza sonora totale in refrigerazione	(7)(8)	dB(A)	66	67	68	69	70	70
otenza sonora in riscaldamento	(7)(9)	dB(A)	66	67	68	69	70	70
IMENSIONI E PESI		` '						
	(10)	mm	1200	1200	1200	1200	1200	1200
	(10)	mm	600	600	600	600	600	600
	(10)	mm	855	855	855	855	855	855
eso in funzionamento	(10)		235	245	250	255	265	275

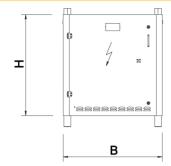
- 1
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C. Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

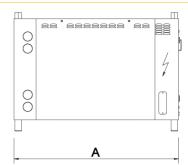
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente

0071 - 0302 23,63-94,21 kW

WWH-HT			0152	0182	0202	0252	0262	0302
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	47,21	56,04	63,97	73,19	82,50	94,21
Potenza assorbita totale	(1)	kW	10.43	12.44	13.71	15.74	17.34	20.19
ER	(1)	kW/kW	4,538	4,516	4.672	4.662	4,769	4,663
EFRIGERAZIONE (EN14511 VALUE)	(- /	100071000	1,000	1,010	1,072	1,002	1,700	1,000
otenza frigorifera	(1)(2)	kW	47,00	55,80	63,80	73,00	82,20	93,90
ER	(1)(2)	kW/kW	4,360	4,350	4,480	4,470	4,570	4,480
lasse EUROVENT	(1)(2)	KVV/KVV	-	-,550	-,400	-,470	-,570	-,400
RISCALDAMENTO (GROSS VALUE)							-	
Potenza termica totale	(3)	kW	54.98	65.69	74.03	85.26	95.49	109.2
oteriza terrilica totale otenza assorbita totale	(3)	kW	12,38	14.64	16,27	18.70	20.76	23,73
COP	(3)	kW/kW	4,435	4,500	4,540	4,561	4,591	4,608
		KVV/KVV	4,433	4,300	4,340	4,501	4,591	4,000
ISCALDAMENTO (EN14511 VALUE)	(2)(2)	kW	FF 00	CF 00	74.00	05.70	95.90	400.0
otenza termica totale	(3)(2)		55,20	65,90	74,30	85,70	/	109,6
OP lasse EUROVENT	(3)(2)	kW/kW	4,240	4,320	4,340	4,370	4,390	4,410
FFICIENZA ENERGETICA								
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)					
lefrigerazione d'ambiente								
rated,c	(11)	kW	-	-	-	-	-	-
EER	(11)(12)		-	-	-	-	-	-
endimento ηs	(11)(13)	%	-	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA	AMENTO (Reg. UE 8°	13/2013)					
Design	(4)	kW	65,1	77,4	87,9	101	113	129
COP	(4)(14)		5,52	5,52	5,66	5,66	5,75	5,66
endimento ηs	(4)(15)	%	213	213	218	218	222	219
lasse di efficienza stagionale	(4)		A+++	-	-	-	-	-
Design	(5)	kW	60,1	72,0	80,8	93,4	104	119
COP	(5)(14)		4,54	4,59	4,66	4,66	4,73	4,70
endimento ηs	(5)(15)	%	174	175	178	179	181	180
lasse di efficienza stagionale	(5)		A+++	-	-	-	-	-
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA	ZIONE							
Portata	(1)	l/s	2,258	2.680	3.059	3,500	3.945	4.505
erdita di carico allo scambiatore	(1)	kPa	18,7	16,0	17,5	17,8	18,8	19,3
CAMBIATORE UTENZA IN RISCALDAN	IENTO		,	,	,	,	,	,
ortata	(3)	l/s	3.454	4.138	4.681	5.393	6.054	6.924
erdita di carico allo scambiatore	(3)	kPa	43.8	38,2	41,1	42,4	44,2	45,6
CAMBIATORE SORGENTE IN REFRIGE			,.	,-	,.	, .	,_	10,0
ortata	(1)	l/s	2,743	3,259	3,698	4,233	4,753	5,446
erdita di carico allo scambiatore	(1)	kPa	17.9	21.2	29.8	30.3	31.6	32,6
CAMBIATORE SORGENTE IN RISCALE		i i i	17,5	21,2	20,0	00,0	01,0	02,0
ocambia i ore sorgen i e in Riscalli Portata	(3)	l/s	2.654	3.171	3.574	4.116	4.609	5.271
erdita di carico allo scambiatore	(3)	kPa	16,8	20,1	27,9	28,6	29,7	30,6
RCUITO FRIGORIFERO	(0)	ΝГα	10,0	20,1	۵۱,5	20,0	23,1	30,0
		N°	2	2	2	2	2	2
. compressori		N°	1	2	1	1	1	2 1
. circuiti			5,70	5,90	7,10	7,80	8,80	10,3
arica refrigerante teorica		kg	5,70	5,90	7,10	7,00	0,00	10,3
IVELLI SONORI	(0)	JD(A)	50	F0	F-7	F-7	50	50
ressione sonora totale	(6)	dB(A)	56	56	57	57	58	58
otenza sonora totale in refrigerazione	(7)(8)	dB(A)	71	71	72	72	73	73
otenza sonora in riscaldamento	(7)(9)	dB(A)	71	71	72	72	73	73
IMENSIONI E PESI								
	(10)	mm	1470	1470	1470	1470	1470	1470
	(10)	mm	885	885	885	885	885	885
1	(10)	mm	900	900	900	900	900	900
Peso in funzionamento	(10)	kg	405	435	445	465	475	495


Note


- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C.
 Valori riferiti alla normativa EN14511
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche

- Parametro calcolato per applicazione a BASSA TEMPERATATRA III CONDIZIONI climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie
 riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente

Pompe di calore con sorgente acqua, solo riscaldamento, produzione acqua ad altissima temperatura

0152 - 0612 70,18-279,2 kW

La pompa di calore EW-HT rappresenta la migliore soluzione per impianti dove è richiesta produzione di acqua calda ad altissima temperatura per uso sanitario, per il riscaldamento d'ambiente o per processi industriali.

Lo speciale compressore utilizzato garantisce la produzione di acqua fino a 78°C ed ammette elevate temperature di evaporazione (temperatura acqua uscita evaporatore fino a 40°C). L'eccezionale campo di funzionamento rende quest'unità perfettamente integrabile in qualsiasi soluzione impiantistica come impianti a 4 tubi per il condizionamento residenziale e commerciale, recuperi di calore industriali, sistemi di teleriscaldamento, impianti di raffreddamento per data center.

Comando

Controllore elettronico W3000+

Il controllore W3000+ si caratterizza per le evolute funzioni e regolazioni proprietarie.

La tastiera Compact dispone di comandi funzionali e un display LCD per la gestione dell'unità mediante menu multi-lingua (19 lingue disponibili). La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità. È inoltre possibile programmare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie. Come opzione, è disponibile l'innovativa interfaccia utente KIPlink (Keyboard In your Pocket) che permette di operare sull'unità direttamente da smartphone e tablet.

La termoregolazione si basa sull'esclusivo algoritmo Quick-Mind, dotato di logiche auto-adattative, utili nei sistemi con ridotto contenuto d'acqua. In alternativa sono impostabili regolazioni proporzionale o proporzionale-integrale.

Per sistemi a più unità è possibile la regolazione delle risorse tramite dispositivi proprietari opzionali. Inoltre, può essere attuata la contabilizzazione dei consumi/prestazioni.

La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet-over-IP, Bacnet MS/TP RS485, Konnex, ModBus TCP/IP, SNMP. Compatibilità con tastiera remota (gestione fino a 8 unità).

Refrigerante

Versioni

B Base

Configurazioni

- Funzione base

Caratteristiche

ESTESO CAMPO DI FUNZIONAMENTO

Produzione di acqua calda fino a 78°C (acqua in uscita dall'evaporatore fino a 40°C).

MASSIMA AFFIDABILITA'

Unità con due circuiti refrigeranti indipendenti, progettata per fornire il massimo rendimento a pieno carico, assicurando continuità di esercizio anche in caso di fermata di uno dei due circuiti.

VALVOLA DI ESPANSIONE ELETTRONICA DI SERIE

L'utilizzo delle valvola di espansione elettronica apporta notevoli benefici specie in presenza di variabilità di carico e nelle diverse condizioni esterne. La sua introduzione su questa unità è conseguente alle accurate scelte progettuali inerenti alla circuitazione frigorifera e l'ottimizzazione del funzionamento in molteplici condizioni operative.

ENERGIA RINNOVABILE PER IL SETTORE COMMERCIALE

Ideale nelle riqualificazioni di edifici in caso di sostituzione di caldaie centralizzate a metano o a gasolio, con possibilità di mantenere il preesistente sistema di distribuzione del caldo basato su radiatori.

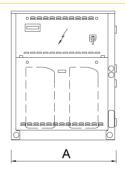
COMPATTEZZA

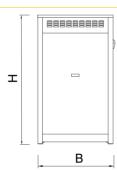
Dimensioni ridotte, per la facilità d'installazione anche in siti con vincoli d'ingombro

- Avviatori "Soft-start"
- Rivestimento insonorizzante maggiorato
- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet
- Tastiera di controllo remota (distanza fino a 200m o fino a 500m)
- Interfaccia utente KIPlink
- Dispositivo per la rilevazione fughe di refrigerante

EW-HT			0152	0182	0202	0262	0302	0412	0512	0612
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI										
RISCALDAMENTO (GROSS VALUE)										
Potenza termica totale	(1)	kW	70,18	79,27	92,48	112,9	139,4	180,7	224,8	279,2
Potenza assorbita totale	(1)	kW	17,00	18,90	22,00	27,90	34,20	43,70	55,10	67,60
COP	(1)	kW/kW	4,129	4,196	4,205	4,047	4,076	4,135	4,080	4,130
RISCALDAMENTO (EN14511 VALUE)										
Potenza termica totale	(1)(2)	kW	70,40	79,50	92,70	113,2	139,7	181,0	225,2	279,7
COP	(1)(2)	kW/kW	4,010	4,070	4,080	3,940	3,980	4,040	4,010	4,060
EFFICIENZA ENERGETICA										
EFFICIENZA STAGIONALE IN RISCAL	DAMENTO (Reg. UE 8	13/2013)							
PDesign	(3)	kW	38,6	43,6	50,0	61,6	78,1	104	128	157
SCOP	(3)(8)		3,27	3,39	3,45	3,30	3,30	3,25	3,27	3,30
Rendimento ηs	(3)(9)	%	123	128	130	124	124	122	123	124
Classe di efficienza stagionale	(10)		A+	A++	A++	A+	-	-	-	-
SCAMBIATORI										
SCAMBIATORE UTENZA IN RISCALDA	AMENTO									
Portata	(1)	l/s	2,145	2,423	2,827	3,452	4,262	5,522	6,871	8,535
Perdita di carico allo scambiatore	(1)	kPa	23,9	25,0	24,2	24,2	19,7	19,8	19,8	20,1
SCAMBIATORE SORGENTE IN RISCA	LDAMENTO				,	,		,	,	
Portata	(1)	l/s	2,616	2,969	3,466	4,185	5,179	6,739	8,351	10,41
Perdita di carico allo scambiatore	(1)	kPa	45,4	46,7	51,8	53,8	49,7	50,1	37,6	37,7
CIRCUITO FRIGORIFERO										
N. compressori		N°	2	2	2	2	2	2	2	2
N. circuiti		N°	2	2	2	2	2	2	2	2
Carica refrigerante teorica		kg	6,00	7,00	8,10	9,10	9,90	11,0	13,2	14,3
IVELLI SONORI										
Pressione sonora totale	(4)	dB(A)	58	58	58	60	60	62	62	64
Potenza sonora in riscaldamento	(5)(6)	dB(A)	74	74	74	76	76	78	78	80
DIMENSIONI E PESI										
4	(7)	mm	1223	1223	1223	1223	1223	1223	1223	1223
3	(7)	mm	877	877	877	877	877	877	877	877
Η	(7)	mm	1496	1496	1496	1496	1496	1496	1496	1496
Peso in funzionamento	(7)	kg	365	380	390	415	430	610	675	740

- Acqua scambiatore caldo lato utenza (in/out) 70°C/78°C; Acqua scambiatore lato sorgente 1
- 2
- Acqua scambiatore calco lato utenza (in/out) 70 °C/78 °C; Acqua scambiatore lato sorgente (in/out) 45 °C/40 °C.


 Valori riferiti alla normativa EN14511


 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.

- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 Coefficiente di prestazione stagionale
 Efficienza energetica stagionale del riscaldamento d'ambiente
 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R134a [GWP₁∞ 1430] ad effetto serra.

Pompe di calore con sorgente acqua, solo riscaldamento, produzione acqua ad altissima temperatura

0182 - 0302 72.91-129.2 kW

La pompa di calore EW-HT-G05 rappresenta la migliore soluzione per impianti dove è richiesta produzione di acqua calda ad altissima temperatura per uso sanitario, per il riscaldamento d'ambiente o per processi industriali.

Lo speciale compressore utilizzato garantisce la produzione di acqua fino a 78°C ed ammette elevate temperature di evaporazione (temperatura acqua uscita evaporatore fino a 40°C). L'eccezionale campo di funzionamento rende quest'unità perfettamente integrabile in qualsiasi soluzione impiantistica come impianti a 4 tubi per il condizionamento residenziale e commerciale, recuperi di calore industriali, sistemi di teleriscaldamento, impianti di raffreddamento per data center.

Comando

Controllore elettronico W3000+

Il controllore W3000+ si caratterizza per le evolute funzioni e regolazioni proprietarie.

La tastiera Compact dispone di comandi funzionali e un display LCD per la gestione dell'unità mediante menu multi-lingua (19 lingue disponibili). La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità. È inoltre possibile programmare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie. Come opzione, è disponibile l'innovativa interfaccia utente KIPlink (Keyboard In your Pocket) che permette di operare sull'unità direttamente da smartphone e tablet.

La termoregolazione si basa sull'esclusivo algoritmo Quick-Mind, dotato di logiche auto-adattative, utili nei sistemi con ridotto contenuto d'acqua. In alternativa sono impostabili regolazioni proporzionale o proporzionale-integrale.

Per sistemi a più unità è possibile la regolazione delle risorse tramite dispositivi proprietari opzionali. Inoltre, può essere attuata la contabilizzazione dei consumi/prestazioni.

La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet-over-IP, Bacnet MS/TP RS485, Konnex, ModBus TCP/IP, SNMP. Compatibilità con tastiera remota (gestione fino a 8 unità).

Refrigerante

Versioni

B Base

Configurazioni

- Funzione base

Caratteristiche

ESTESO CAMPO DI FUNZIONAMENTO

Produzione di acqua calda fino a 78°C (acqua in uscita dall'evaporatore fino a 40°C).

MASSIMA AFFIDABILITA'

Unità con due circuiti refrigeranti indipendenti, progettata per fornire il massimo rendimento a pieno carico, assicurando continuità di esercizio anche in caso di fermata di uno dei due circuiti

VALVOLA DI ESPANSIONE ELETTRONICA DI SERIE

L'utilizzo delle valvola di espansione elettronica apporta notevoli benefici specie in presenza di variabilità di carico e nelle diverse condizioni esterne. La sua introduzione su questa unità è conseguente alle accurate scelte progettuali inerenti alla circuitazione frigorifera e l'ottimizzazione del funzionamento in molteplici condizioni operative.

ENERGIA RINNOVABILE PER IL SETTORE COMMERCIALE

Ideale nelle riqualificazioni di edifici in caso di sostituzione di caldaie centralizzate a metano o a gasolio, con possibilità di mantenere il preesistente sistema di distribuzione del caldo basato su radiatori.

COMPATTEZZA

Dimensioni ridotte, per la facilità d'installazione anche in siti con vincoli d'ingombro

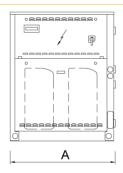
REFRIGERANTE A BASSO GWP

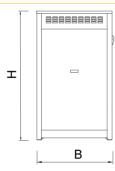
Refrigerante R513A, caratterizzato da effetto serra ridotto (GWP R513A = 572, GWP R134a = 1300 secondo IPCC) e zero impatto sullo strato di ozono. Non infiammabile (ASHRAE 34, ISO 817: classe A1).

- Avviatori "Soft-start"
- Rivestimento insonorizzante maggiorato
- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet
- Tastiera di controllo remota (distanza fino a 200m o fino a 500m)
- Interfaccia utente KIPlink
- Dispositivo per la rilevazione fughe di refrigerante

EW-HT-G05			0182	0202	0262	0302	/
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	
PRESTAZIONI							
RISCALDAMENTO (GROSS VALUE)							
Potenza termica totale	(1)	kW	72,91	85,93	105,1	129,2	
Potenza assorbita totale	(1)	kW	19,80	22,90	28,60	34,30	
COP	(1)	kW/kW	3,682	3,751	3,675	3,767	
RISCALDAMENTO (EN14511 VALUE)							
Potenza termica totale	(1)(2)	kW	73,00	86,00	105,2	129,3	
COP	(1)(2)	kW/kW	3,640	3,710	3,640	3,730	
EFFICIENZA ENERGETICA							
EFFICIENZA STAGIONALE IN RISCALDA	MENTO ((Reg. UE 81	13/2013)				
PDesign	(3)	` kW	41,7	48,4	60,2	74,0	
SCOP	(3)(8)		3,15	3,11	3,10	3,19	
Rendimento ηs	(3)(9)	%	118	116	116	120	
Classe di efficienza stagionale	(10)		A+	A+	A+	-	
SCAMBIATORI							
SCAMBIATORE UTENZA IN RISCALDAM	ENTO						
Portata	(1)	l/s	2,229	2,626	3,212	3,950	
Perdita di carico allo scambiatore	(1)	kPa	15,9	14,0	14,2	15,8	
SCAMBIATORE SORGENTE IN RISCALD	AMENTO						
Portata	(1)	l/s	2,621	3,109	3,775	4,682	
Perdita di carico allo scambiatore	(1)	kPa	19,3	17,7	18,2	20,9	
CIRCUITO FRIGORIFERO							
N. compressori		N°	2	2	2	2	
N. circuiti		N°	2	2	2	2	
Carica refrigerante teorica		kg	8,40	8,80	10,5	10,9	
LIVELLI SONORI							
Pressione sonora totale	(4)	dB(A)	58	58	60	60	
Potenza sonora in riscaldamento	(5)(6)	dB(A)	74	74	76	76	
DIMENSIONI E PESI							
A	(7)	mm	1223	1223	1223	1223	
В	(7)	mm	877	877	877	877	
Н	(7)	mm	1496	1496	1496	1496	
Peso in funzionamento	(7)	kg	380	390	415	430	

- Acqua scambiatore caldo lato utenza (in/out) 70°C/78°C; Acqua scambiatore lato sorgente 1
- 2
- Acqua scambiatore calco lato utenza (in/out) 70 °C/78 °C; Acqua scambiatore lato sorgente (in/out) 45 °C/40 °C.


 Valori riferiti alla normativa EN14511


 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.

- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 Coefficiente di prestazione stagionale
 Efficienza energetica stagionale del riscaldamento d'ambiente
 Classe di efficienza energetica per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 811/2013]

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R513A [GWP₁₀₀ 631] ad effetto serra.

Pompe di calore con condensazione ad acqua ottimizzate per il riscaldamento, alta temperatura

La pompa di calore dedicata al riscaldamento WW(H)-HT rappresenta la migliore soluzione per impianti dove è richiesta produzione di acqua calda ad alta temperatura, sia per il riscaldamento che per uso sanitario. Lo speciale compressore utilizzato garantisce la produzione di acqua fino a 65°C.

La versione WW-HT solo riscaldamento oppure la versione WWH-HT, reversibile lato idrico, permettono di soddisfare in modo completo qualunque esigenza impiantistica ed applicativa grazie ad un'ampia gamma di modelli, configurazioni idroniche e accessori. La nuova gamma WW(H)-HT soddisfa installazioni in ambito commerciale (uffici, hotel) residenziale (abitazione, appartamenti) o industriale (produzione di sola acqua calda ad uso sanitario).

Comando

Controllore elettronico W3000TE

Controllore con display LCD dedicato per applicazioni in pompa di calore con logica integrata per la produzione di acqua calda ad alta e altissima temperatura per uso sanitario. La gestione delle differenti temperature avviene in modo automatico in base alle diverse condizioni in cui si trova ad operare il sistema, con la possibilità di assegnare dedicati livelli di priorità alla produzione dell'acqua ad uso sanitario a seconda delle diverse esigenze applicative. Completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi comportamento dell'unità. Per sistemi a più unità è possibile effettuare la regolazione delle risorse in modo differenziato al fine di dedicare solo una parte della potenza installata per la produzione di acqua sanitaria, assicurando una più efficiente distribuzione dell'energia e garantendo la contemporaneità di alimentazione dell'acqua nei diversi sistemi di distribuzione. L'orologio integrato permette di creare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia e per la gestione dei cicli anti-legionella. Supervisione realizzabile tramite diverse opzioni, con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks. Una dedicata tastiera per installazione a muro assicura il controllo remoto di tutte le funzioni.

Refrigerante

Versioni

B Base

Configurazioni

- Funzione base

H Funzione pompa di calore con reversibilità lato idraulico

Caratteristiche

GAS REFRIGERANTE R410A

L'utilizzo dell'R410A ha permesso di ottenere unità con migliori efficienze energetiche nel pieno rispetto dell'ambiente (O.D.P. = 0)

VALVOLA DI ESPANSIONE ELETTRONICA DI SERIE

L'utilizzo delle valvola di espansione elettronica apporta notevoli benefici specie in presenza di variabilità di carico e nelle diverse condizioni esterne. La sua introduzione su questa unità è conseguente alle accurate scelte progettuali inerenti alla circuitazione frigorifera e l'ottimizzazione del funzionamento in molteplici condizioni operative.

ESTESO CAMPO DI FUNZIONAMENTO

Produzione di acqua calda ad uso riscaldamento e in priorità per uso sanitario fino a 65°C.

UNITA' IMPILABILI

La speciale struttura è progettata per sovrapporre due unità (prive di pompe a bordo) senza alcun accessorio aggiuntivo, riducendo lo spazio necessario, permettendo di aumentare la capacità del sistema. La potenza di due pompe di calore con le dimensioni in pianta di una sola.

GRUPPO IDRONICO INTEGRATO

L'unità può essere fornita con kit idronico lato utenza e/o kit idronico lato sorgente. Il kit comprende tutti i componenti idraulici che consentono di ottimizzare gli spazi, tempi e costi di installazione.

L'ampia disponibilità di pompe selezionabili sia per il lato utenza che lato sorgente, fino a 13 differenti modelli, permette di garantire sempre la migliore soluzione in portata, prevalenza utile e assorbimento.

CONTROLLO INTEGRATO DELLA CONDENSAZIONE

L'elettronica delle unità è in grado di gestire il controllo della condensazione più adatto per ogni tipologia di applicazione: valvola modulante a due vie, controllo inverter per le pompe.

ENERGIA RINNOVABILE PER IL SETTORE COMMERCIALE

Ideale nelle riqualificazioni di edifici in caso di sostituzione di caldaie centralizzate a metano o a gasolio, con possibilità di mantenere il preesistente sistema di distribuzione del caldo basato su radiatori.

CONFIGURAZIONE MODULARE

Configurazione modulare con estensione della capacità di sistema fino a 400kW per installazioni di media e grande potenza. Possibilità di frazionamento della potenza termica tra i circuiti di sistema e produzione di acqua calda sanitaria.

- Soft start
- Unità Impilabili
- Kit idronico lato sorgente e lato utenze (n°13 pompe singole e n°13 pompe gemellari)
- Predisposizione delle connessioni idriche su lato destro, verso l'alto o posteriore.
- Rivestimento insonorizzante maggiorato.
- Sonda aria esterna per compensazione setpoint acqua impianto
- Valvola deviatrice a 3 vie per produzione acqua calda sanitaria
- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet

WWH-HT			0071	0091	0101	0121	0131	0151
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	23,63	28,01	32,00	36,56	41,30	47,10
Potenza assorbita totale	(1)	kW	5,220	6.220	6,856	7.856	8,679	10.11
ER	(1)	kW/kW	4,521	4,502	4,665	4,656	4,758	4,663
REFRIGERAZIONE (EN14511 VALUE)			,	,	,	,	,	,
Potenza frigorifera	(1)(2)	kW	23,50	27,90	31,90	36,40	41,10	46.90
ER	(1)(2)	kW/kW	4,330	4,320	4,470	4,470	4,560	4,480
Classe EUROVENT	(/ (/	,	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)								
Potenza termica totale	(3)	kW	27.52	32.84	37.04	42.58	47.79	54.59
otenza assorbita totale	(3)	kW	6.200	7.331	8,149	9,330	10,39	11.87
COP	(0)	kW/kW	4,435	4,475	4,540	4,566	4,596	4,588
RISCALDAMENTO (EN14511 VALUE)		100071000	1,100	1,170	1,010	1,000	1,000	1,000
otenza termica totale	(3)(2)	kW	27,60	32.90	37,10	42.70	48,00	54,80
COP	(3)(2)	kW/kW	4,210	4,260	4,320	4,340	4,380	4,380
Classe EUROVENT	(3)(2)	INV/INV	7,210	7,200	7,320	7,040	7,300	4,500
FFICIENZA ENERGETICA								
	DAMENTO	(Dec UE	2046/2004\					
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)					
Refrigerazione d'ambiente	(4.4)	114						
rated,c	(11)	kW	-	-	-	-	-	-
EER	(11)(12)	0/	-	-	-	-	-	-
tendimento ηs	(11)(13)	%	-	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA								
Design	(4)	kW	32,5	38,7	43,9	50,1	56,5	64,7
COP	(4)(14)		5,12	5,07	5,26	5,23	5,34	5,24
tendimento ηs	(4)(15)	%	197	195	202	201	206	202
Classe di efficienza stagionale	(4)		A+++	A+++	A+++	A+++	A+++	A+++
Design	(5)	kW	30,1	36,0	40,4	46,6	52,2	59,6
COP	(5)(14)		4,12	4,15	4,22	4,25	4,26	4,24
endimento ηs	(5)(15)	%	157	158	161	162	162	162
Classe di efficienza stagionale	(5)		A+++	A+++	A+++	A+++	A+++	A+++
CAMBIATORI								
CAMBIATORE UTENZA IN REFRIGERA	ZIONE							
Portata	(1)	l/s	1,130	1,340	1,530	1,748	1,975	2,252
Perdita di carico allo scambiatore	(1)	kPa	18,0	18,5	18,6	19,3	19,4	18,6
CAMBIATORE UTENZA IN RISCALDAN	MENTO							
Portata	(3)	l/s	1,728	2,068	2,341	2,694	3,029	3,460
Perdita di carico allo scambiatore	(3)	kPa	42,2	44,0	43,5	45,8	45,7	44,0
CAMBIATORE SORGENTE IN REFRIGE	RAZIONE							
Portata	(1)	l/s	1,373	1,629	1,850	2,114	2,379	2,723
Perdita di carico allo scambiatore	(1)	kPa	11,9	12,4	14,0	14,8	16,2	17,6
CAMBIATORE SORGENTE IN RISCALE	DAMENTO		,	,	,	,	,	· ·
Portata	(3)	l/s	1.328	1.585	1.788	2.055	2.307	2.635
Perdita di carico allo scambiatore	(3)	kPa	11.2	11,7	13,1	14,0	15,2	16,5
CIRCUITO FRIGORIFERO	(-)	4	,_	, .	.0,.	,0	.0,2	
I. compressori		N°	1	1	1	1	1	1
l. circuiti		N°	1	1	1	1	1	1
carica refrigerante teorica		kg	2,80	3,30	3,70	4,30	4,90	5,50
IVELLI SONORI		кy	2,00	0,00	5,70	7,50	7,50	5,50
Pressione sonora totale	(6)	dB(A)	51	52	53	54	55	55
ressione sonora totale otenza sonora totale in refrigerazione	(7)(8)	dB(A)	66	52 67	53 68	69	70	70
	(7)(8)		66	67	68	69	70	70
otenza sonora in riscaldamento	(7)(9)	dB(A)	00	70	80	09	70	70
IMENSIONI E PESI	(40)		4000	4000	4000	4000	4000	1000
A	(10)	mm	1200	1200	1200	1200	1200	1200
8	(10)	mm	600	600	600	600	600	600
1	(10)	mm	855	855	855	855	855	855
Peso in funzionamento	(10)	kg	235	245	250	255	265	275

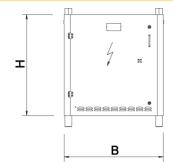
- 1
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C. Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

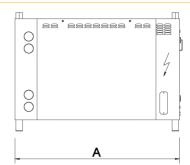
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente

0071 - 0302 23,63-94,21 kW

WWH-HT			0152	0182	0202	0252	0262	0302
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	47,21	56,04	63,97	73,19	82,50	94,21
Potenza assorbita totale	(1)	kW	10,43	12,44	13,71	15,74	17,34	20,19
ER	(1)	kW/kW	4,538	4,516	4,672	4,662	4,769	4,663
REFRIGERAZIONE (EN14511 VALUE)			,	,	,	,	,	,
Potenza frigorifera	(1)(2)	kW	47,00	55,80	63,80	73,00	82,20	93.90
ER	(1)(2)	kW/kW	4,360	4,350	4,480	4,470	4,570	4,480
Classe EUROVENT	(/ (/		-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)								
Potenza termica totale	(3)	kW	54.98	65.69	74.03	85.26	95.49	109.2
otenza assorbita totale	(3)	kW	12.38	14.64	16,27	18.70	20,76	23.73
COP	(0)	kW/kW	4,435	4,500	4,540	4,561	4,591	4,608
RISCALDAMENTO (EN14511 VALUE)		100071000	1,100	1,000	1,010	1,001	1,001	1,000
otenza termica totale	(3)(2)	kW	55.20	65,90	74,30	85,70	95,90	109.6
COP	(3)(2)	kW/kW	4,240	4,320	4,340	4,370	4,390	4,410
Classe EUROVENT	(0)(2)	IXVV/IXVV	7,270	7,020	4,040	4,070	7,000	7,710
FFICIENZA ENERGETICA								
	DAMENTO	(Dec UE	2046/2004\					
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)					
Refrigerazione d'ambiente	(4.4)	114						
rated,c	(11)	kW	-	-	-	-	-	-
EER	(11)(12)	0/	-	-	-	-	-	-
tendimento ηs	(11)(13)	%	-	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA								
PDesign	(4)	kW	65,1	77,4	87,9	101	113	129
COP	(4)(14)		5,52	5,52	5,66	5,66	5,75	5,66
tendimento ηs	(4)(15)	%	213	213	218	218	222	219
Classe di efficienza stagionale	(4)		A+++	-	-	-	-	-
Design	(5)	kW	60,1	72,0	80,8	93,4	104	119
COP	(5)(14)		4,54	4,59	4,66	4,66	4,73	4,70
endimento ηs	(5)(15)	%	174	175	178	179	181	180
Classe di efficienza stagionale	(5)		A+++	-	-	-	-	-
CAMBIATORI								
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE							
Portata	(1)	l/s	2,258	2,680	3,059	3,500	3,945	4,505
Perdita di carico allo scambiatore	(1)	kPa	18,7	16,0	17,5	17,8	18,8	19,3
CAMBIATORE UTENZA IN RISCALDAN	MENTO							
Portata	(3)	l/s	3,454	4,138	4,681	5,393	6,054	6,924
Perdita di carico allo scambiatore	(3)	kPa	43,8	38,2	41,1	42,4	44,2	45,6
CAMBIATORE SORGENTE IN REFRIGE	RAZIONE							
Portata	(1)	l/s	2,743	3,259	3,698	4,233	4,753	5,446
Perdita di carico allo scambiatore	(1)	kPa	17,9	21,2	29,8	30,3	31,6	32,6
CAMBIATORE SORGENTE IN RISCALE	DAMENTO		,-	,	- , -	,-	, ,	, ,
Portata	(3)	l/s	2.654	3.171	3.574	4.116	4.609	5.271
Perdita di carico allo scambiatore	(3)	kPa	16,8	20,1	27,9	28,6	29,7	30,6
CIRCUITO FRIGORIFERO	(-)	4	. 0,0		,0	20,0		00,0
I. compressori		N°	2	2	2	2	2	2
l. circuiti		N°	1	1	1	1	1	1
carica refrigerante teorica		kg	5,70	5,90	7,10	7,80	8,80	10,3
IVELLI SONORI		кy	5,70	5,50	7,10	1,00	0,00	10,3
ressione sonora totale	(6)	dD(A)	56	56	57	57	58	58
ressione sonora totale totenza sonora totale in refrigerazione	(7)(8)	dB(A) dB(A)	71	71	72	72	73	73
	(7)(8)		71	71	72	72	73	73
otenza sonora in riscaldamento	(7)(9)	dB(A)	/ 1	<i>f</i> T	12	12	13	13
IMENSIONI E PESI	(40)		4.470	4.470	4.470	4.470	4.470	1170
	(10)	mm	1470	1470	1470	1470	1470	1470
3	(10)	mm	885	885	885	885	885	885
1	(10)	mm	900	900	900	900	900	900
Peso in funzionamento	(10)	kg	405	435	445	465	475	495


Note


- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C. Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente (in/out) 10°C/7°C Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche

- Parametro calcolato per applicazione a BASSA TEMPERATATRA III CONDIZIONI climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche
 AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie
 riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente

Unità da interno per la produzione di acqua refrigerata/riscaldata con sorgente acqua, compressori ermetici rotativi di tipo Scroll, scambiatori a piastre saldo-brasate e valvola di espansione elettronica di serie. Basamento, struttura e pannellatura in lamiera di acciaio zincato a caldo di adeguato spessore. Verniciatura di tutte le parti con polveri poliesteri che assicura una totale resistenza agli agenti atmosferici, verniciatura RAL 7035.

La gamma comprende le versioni a due compressori monocircuito e le versioni con quattro compressori suddivisi in due circuiti.

Comando

Controllore elettronico W3000TE

Tastiera Compact con display LCD per la gestione dell'unità mediante menu multi-livello. La termoregolazione prevede il controllo della temperatura acqua ad uso impianto per riscaldamento/raffrescamento e dell'acqua ad uso sanitario (solo per unità reversibili). Il controllo delle temperature è automatico in base alle diverse condizioni, con possibilità di assegnare dedicati livelli di priorità alla produzione dell'acqua sanitaria. La termoregolazione si basa sull'esclusivo algoritmo Quick- Mind, dotato di logiche autoadattative, utili nei sistemi con ridotto contenuto d'acqua. In alternativa sono impostabili regolazioni proporzionale o proporzionale-integrale. La diagnostica comprende la gestione degli allarmi, con funzioni "black box" e storico allarmi per una migliore analisi del comportamento dell'unità.

Per sistemi a più unità è possibile regolare le risorse in modo differenziato, parzializzando la potenza installata per produrre acqua sanitaria, per una più efficiente distribuzione dell'energia e garantire la contemporaneità di alimentazione dell'acqua nei diversi sistemi di distribuzione. Possibile creare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie, indispensabile per una produzione efficiente dell'energia e per gestione dei cicli anti-legionella. Disponibile programmazione fasce orarie anche per la produzione dell'acqua calda sanitaria. La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks. Una dedicata tastiera per installazione a muro assicura il controllo remoto di tutte le funzioni. Come opzione (pacchetto VPF), viene integrata la modulazione della capacità con la regolazione della portata idraulica, tramite pompe inverter e risorse dedicate per il circuito idraulico

Refrigerante

Versioni

- Base

Configurazioni

H Funzione pompa di calore con reversibilità lato idraulico

Caratteristiche

ELEVATA EFFICIENZA

Elevata efficienza a carico pieno e parziale, ai migliori livelli di mercato. Queste unità garantiscono bassi costi di esercizio e quindi un rapido ritorno dell'investimento.

ErP READY

Le elevatissime efficienze ai carichi parziali consentono di soddisfare e superare le efficienze stagionali per il riscaldamento SCOP (solo per unità reversibili) e per il raffreddamento SEER, definite dalle direttive per la progettazione ecosostenibile. Superando anche i requisiti minimi di efficienza energetica stagionale richiesti a partire dal 2021.

PORTATA ACQUA VARIABILE (OPTION)

Regolare correttamente la velocità delle pompe comandate da inverter a seconda del carico richiesto dall'impianto, consente di ridurre i consumi elettrici e garantire il funzionamento dell'unità anche in condizioni critiche. Opzione VPF (Variable Primary Flow) disponibile per taglie 0604-1204.

MASSIMA SILENZIOSITA

Elevata silenziosità abbinata ad un'alta efficienza, grazie ad accorgimenti acustici dedicati e ad una progettazione mirata nella scelta dei componenti.

CONTROLLO INTEGRATO DELLA CONDENSAZIONE

L'elettronica delle unità è in grado di gestire il controllo della condensazione più adatto per ogni tipologia di applicazione: valvola modulante a due o tre vie, segnale 0-10V per controllo pompe con inverter.

COMPLETA VERSATILITA'

Unità progettate prevedendo una serie di accessori integrati per il funzionamento con acqua a perdere (pozzo, falda, ecc.), dry cooler o torre evaporativa e per sonde geotermiche in grado così di soddisfare ogni esigenza impiantistica.

VALVOLA DI ESPANSIONE ELETTRONICA DI SERIE

La valvola di espansione elettronica migliora l'efficienza dell'unità, soprattutto in presenza di variabilità di carico e di temperatura della sorgente. Tutto ciò si traduce in una riduzione dei consumi, una rapida messa a regime e un' estensione dei limiti operativi.

- Tastiera interfaccia Touch Screen
- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet
- Sonda aria esterna per compensazione setpoint acqua impianto
- Cofanatura integrale (tipologia base)
- Rivestimento insonorizzante maggiorato
- Sistema VPF (Variable Primary Flow)
- Dispositivo controllo della condensazione: valvola pressostatica, modulante a due-tre vie ed inverter

NX-W /H			0122	0152	0182	0202	0252	0262	0302	0352
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI										
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	38,14	47,70	56,19	65,31	72,33	82,33	96,67	111,4
Potenza assorbita totale	(1)	kW	7,525	9,312	10,84	12,62	13,84	15,99	18,88	21,68
EER	(1)	kW/kW	5,060	5,124	5,204	5,183	5,239	5,144	5,116	5,134
REFRIGERAZIONE (EN14511 VALUE)										
Potenza frigorifera	(1)(2)	kW	37,90	47,50	55,90	65,10	72,00	82,00	96,40	111,0
EER	(1)(2)	kW/kW	4,850	4,890	4,960	4,960	5,010	4,960	4,940	4,960
Classe EUROVENT			-	-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)										
Potenza termica totale	(3)	kW	42,41	52,95	62,57	72,58	80,09	91,03	107,2	123,1
Potenza assorbita totale	(3)	kW	9,438	11,54	13,30	15,55	17,25	19,62	23,14	26,53
COP		kW/kW	4,492	4,609	4,707	4,654	4,657	4,643	4,641	4,645
RISCALDAMENTO (EN14511 VALUE)										
Potenza termica totale	(3)(2)	kW	42,50	53,20	62,80	72,80	80,40	91,20	107,4	123,4
COP	(3)(2)	kW/kW	4,280	4,370	4,460	4,450	4,450	4,460	4,460	4,470
Classe EUROVENT										
EFFICIENZA ENERGETICA										
EFFICIENZA STAGIONALE IN RAFFREDD	AMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente		` -								
Prated,c	(11)	kW	-	-	-	-	-	-	-	-
SEER	(11)(12)		-	-	-	-	-	-	-	-
Rendimento ηs	(11)(13)	%	-	-	-	-	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDAI	MENTO (Reg. UE 8	13/2013)							
PDesign	(4)	kW	51,0	63,7	75,5	87,2	96,9	110	129	149
SCOP	(4)(14)		5,89	5,99	5,87	6,02	6,14	6,07	6,09	6,16
Rendimento ηs	(4)(15)	%	228	232	227	233	238	235	236	238
Classe di efficienza stagionale	(4)		A+++	A+++	A+++	-	-	-	-	-
PDesign	(5)	kW	46,1	57,5	67,8	79,1	86,9	98,5	116	133
SCOP	(5)(14)		4,62	4,68	4,73	4,78	4,80	4,79	4,80	4,85
Rendimento ηs	(5)(15)	%	177	179	181	183	184	184	184	186
Classe di efficienza stagionale	(5)		A+++	A+++	A+++	-	-	-	-	-
SCAMBIATORI										
SCAMBIATORE UTENZA IN REFRIGERAZ	IONE									
Portata	(1)	l/s	1,824	2,281	2,687	3,123	3,459	3,937	4,623	5,326
Perdita di carico allo scambiatore	(1)	kPa	21,6	26,6	26,7	21,8	21,6	21,8	22,7	22,9
SCAMBIATORE UTENZA IN RISCALDAME	ENTO									
Portata	(3)	l/s	2,672	3,355	3,990	4,619	5,090	5,785	6,806	7,819
Perdita di carico allo scambiatore	(3)	kPa	46,4	57,4	59,0	47,8	46,9	47,1	49,3	49,4
SCAMBIATORE SORGENTE IN REFRIGER	RAZIONE									
Portata	(1)	l/s	2,175	2,716	3,194	3,713	4,106	4,684	5,505	6,339
Perdita di carico allo scambiatore	(1)	kPa	11,8	15,7	18,1	20,6	23,1	13,5	14,2	14,6
SCAMBIATORE SORGENTE IN RISCALDA	AMENTO									
Portata	(3)	l/s	2,047	2,556	3,020	3,504	3,866	4,394	5,172	5,940
Perdita di carico allo scambiatore	(3)	kPa	10,4	13,9	16,2	18,3	20,5	11,9	12,5	12,8
CIRCUITO FRIGORIFERO										
N. compressori		N°	2	2	2	2	2	2	2	2
N. circuiti		N°	1	1	1	1	1	1	1	1
Carica refrigerante teorica		kg	3,80	4,20	5,20	5,50	6,70	8,00	9,60	11,0
LIVELLI SONORI										
Pressione sonora totale	(6)	dB(A)	57	57	58	58	58	59	60	60
Potenza sonora totale in refrigerazione	(7)(8)	dB(A)	73	73	74	74	74	75	76	77
Potenza sonora in riscaldamento	(7)(9)	dB(A)	74	74	75	75	75	76	77	78
DIMENSIONI E PESI										
A	(10)	mm	1225	1225	1225	1225	1225	1225	1225	1570
В	(10)	mm	885	885	885	885	885	885	885	885
Н	(10)	mm	1495	1495	1495	1495 410	1495	1495	1495	1805
Peso in funzionamento	(10)	kg	360	360	390		440	480	520	660

- 1
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C. Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente

		0402	0452	0502	0552	0602	0702	0802	0604
	V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
(1)	kW	126,1	141,8	157,5	181,1	204,4	230,5	254,3	191,8
(1)	kW	24,48	27,68	30,88	35,20	39,59	45,24	51,16	38,29
(1)	kW/kW	5,147	5,119	5,097	5,145	5,162	5,100	4,967	5,008
(1)(2)	kW	125,7	141,4	157,0	180,6	203,8	229,8	253,4	191,4
(1)(2)	kW/kW	4,980	4,960	4,930	4,980	5,000	4,930	4,790	4,880
		-	-	-	-	-	-	-	-
(3)	kW	139,0	156,8	174,6	200,2	225,7	255,3	283,3	211,7
(3)	kW	29,93	33,85	37,78	43,02	48,35	54,61	61,48	46,86
	kW/kW	4,649	4,625	4,619	4,656	4,673	4,676	4,607	4,514
(3)(2)	kW	139,3	157,1	175,0	200,6	226,2	255,9	284,0	212,1
(3)(2)	kW/kW	4,480	4,470	4,460	4,490	4,510	4,490	4,400	4,400
AMENTO	(Reg. UE	2016/2281)						
(11)	kW	-	-	-	-	-	-	-	-
(11)(12)		-	-	-	-	-	-	-	-
(11)(13)	%	-	-	-	-	-	-	-	-
MENTO (Rea. UE 8	313/2013)							
(4)	kW	169	190	211	242	273	308	339	255
(4)(14)		6,07	6,10	6,01	6,10	6,11	6,07	5,82	6,18
(4)(15)	%	235	236	232	236	236	235	225	239
(4)		-	-	-	-	-	-	-	-
(5)	kW	150	170	189	217	244	277	308	229
(5)(14)		4,81	4,85	4,80	4,87	4,86	4,90	4,72	4,81
(5)(15)	%	184	186	184	187	186	188	181	184
(5)		-	-	-	-	-	-	-	-
ZIONE									
(1)	l/s	6,030	6,780	7,532	8,659	9,777	11,02	12,16	9,174
(1)	kPa	23,1	23,8	24,4	24,9	25,5	30,7	37,4	17,1
ENTO									
(3)	l/s	8,832	9,959	11,09	12,73	14,36	16,25	17,97	13,36
(3)	kPa	49,6	51,4	52,9	53,8	55,1	66,7	81,6	36,3
RAZIONE									
(1)	l/s	7,174	8,074	8,974	10,30	11,63	13,14	14,55	10,96
(1)	kPa	15,4	15,9	18,5	18,3	21,0	23,5	28,8	16,2
AMENTO									
(3)	l/s	6,708	7,569	8,430	9,665	10,90	12,32	13,68	10,22
(3)	kPa	13,5	14,0	16,3	16,1	18,5	20,7	25,4	14,1
	N°	2	2	2	2	2	2	2	4
	N°	1	1	1	1	1	1	1	2
	ka	12,5	13,9	14,8	18,1	21,4	21,9	22,0	19,3
(6)	dB(A)	60	61	61	62	62	65	66	69
(7)(8)	dB(A)	77	78	78	79	79	82	83	86
(7)(9)		78	79	79	80	80	83	84	87
· · · ·									
(10)	mm	1570	1570	1570	1570	1570	1570	1570	2210
		885	885	885	885	885	885	885	885
(10)	mm	000						000	
(10)	mm	1805	1805	1805	1805	1805	1805	1805	1805
E	(1) (1) (1)(2) (1)(2) (3) (3) (3) (3)(2) (3)(2) (3)(2) (11) (11)(12) (11)(13) (11)(13) (11)(13) (14) (4)(14) (4)(15) (5) (5)(14) (5)(5) (5) (1) (1) (1) (1) ENTO (3) (3) RAZIONE (1) (1) AMENTO (3) (3) (6) (7)(8) (7)(9)	(1) kW (1) kW/kW (1) kW/kW (1)(2) kW/kW (1)(2) kW/kW (1)(2) kW/kW (3) kW/kW (3)(2) kW/kW (3)(2) kW/kW (3)(2) kW/kW (3)(2) kW/kW (3)(2) kW/kW (3)(2) kW/kW (4)(11) kW (11)(12) (11)(13) % (4) (4)(14) (4)(15) % (4) (4)(15) % (5) kW (5)(14) (5)(15) % (5) ZIONE (1) l/s (1) kPa ENTO (3) l/s (3) kPa RAZIONE (1) l/s (1) kPa AMENTO (3) l/s (3) kPa AMENTO (3) l/s (3) kPa N° AMENTO (3) l/s (3) kPa N° Kg (6) dB(A) (7)(8) dB(A)	V/ph/Hz 400/3/50	V/ph/Hz 400/3/50 400/3/50 400/3/50	V/ph/Hz 400/3/50 400/3/50 400/3/50	V/ph/Hz 400/3/50	V/ph/Hz 400/3/50	V/ph/Hz 400/3/50	V/ph/Hz 400/3/50

Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C. Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente (in/out) 10°C/7°C Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche

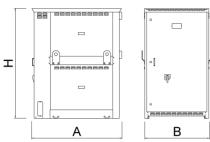
AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

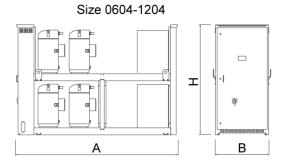
Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.

7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
8 Potenza sonora in refrigerazione, indoors.
9 Potenza sonora in riscaldamento, indoors.
10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
12 Indice di efficienza energetica stagionale
13 Efficienza energetica stagionale del raffreddamento d'ambiente
14 Coefficiente di prestazione stagionale
15 Efficienza energetica stagionale del riscaldamento d'ambiente

STAZIONI RIGERAZIONE (GROSS VALUE) ruza fingorifera (1) kW 21,0 250,0 281,3 312,7 359,3 397,8 noza assorbita totale (1) kW 221,0 5,044 5,050 5,050 5,039 4,972 (RIGERAZIONE (EN14511 VALUE) ruza fingorifera (1)(2) kW 220,5 249,4 280,6 311,9 359,0 397,4 272 (RIGERAZIONE (EN14511 VALUE)) ruza fingorifera (1)(2) kW 220,5 249,4 280,6 311,9 359,0 397,4 281,0 28	NX-W /H			0704	0804	0904	1004	1104	1204
RIGERAZIONE (GROSS VALUE) noza ingorifera (1) kW 43,95 49,61 56,09 62,55 71,34 79,96 in the property of the pr	nentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
mza frigorifera (1) kW 221,0 250,0 281,3 312,7 359,3 397,8 mza assorbita totale (1) kW 421,0 5,045 49,61 50,09 62,55 71,34 79,96 RIGERAZIONE (EN14511 VALUE) mza frigorifera (1)(2) kW/kW 5,034 5,040 5,014 5,003 5,039 4,972 RIGERAZIONE (EN14511 VALUE) mza frigorifera (1)(2) kW/kW 4,910 4,910 4,860 4,860 4,860 4,890 4,810 se EUROVENT	STAZIONI								
mza frigorifera (1) kW 221,0 250,0 281,3 312,7 359,3 397,8 mza assorbita totale (1) kW 421,0 5,045 49,61 50,09 62,55 71,34 79,96 RIGERAZIONE (EN14511 VALUE) mza frigorifera (1)(2) kW/kW 5,034 5,040 5,014 5,003 5,039 4,972 RIGERAZIONE (EN14511 VALUE) mza frigorifera (1)(2) kW/kW 4,910 4,910 4,860 4,860 4,860 4,890 4,810 se EUROVENT	FRIGERAZIONE (GROSS VALUE)								
mza assorbita totale	tenza frigorifera	(1)	kW	221,0	250,0	281,3	312,7	359,3	397,8
RIGERAZIONE (EN14511 VALUE) rizza frigorifera (1)(2) kW 20,5 249,4 280,6 311,9 359,0 397,4 280,6 set UROVENT	tenza assorbita totale	(1)	kW	43.95	49.61	56.09	62.55	71.34	79.96
RIGERAZIONE (EN14511 VALUE) riza frigorifera (1)(2) kW 220,5 249,4 280,6 311,9 359,0 397,4 280,6 48,80 4,800 4,800 4,800 4,81	R	(1)	kW/kW	5,034	5,040	5,014	5,003	5,039	4,972
mza figorifera (1)(2) kW/kW 4,910 4,910 4,800 4,800 4,800 4,810 se EUROVENT (1)(2) kW/kW 4,910 4,910 4,800 4,800 4,800 4,810 se EUROVENT (1)(2) kW/kW 4,910 4,910 4,800 4,800 4,800 4,810 se EUROVENT (1)(2) kW/kW 4,910 4,910 4,800 4,800 4,810 se EUROVENT (1)(2) kW/kW 4,910 4,910 4,800 4,800 4,810 se EUROVENT (1)(2) kW/kW 4,910 4,9		, ,		-,	-,-	-,-	-,	-,	,-
SE EUROVENT		(1)(2)	kW	220.5	249 4	280.6	311 9	359 0	397 4
SE EUROVENT	R					,			
CALDAMENTO (GROSS VALUE) (3)		(· /(=/	1000/1000						
mza termica totale (3) kW 243,1 274,5 309,4 345,1 395,5 440,3 kW aza assorbita totale (3) kW 83,75 60,65 68,25 76,49 87,15 98,14 kW/kW 4,519 4,530 4,537 4,511 4,541 4,488 cALDAMENTO (EN14511 VALUE) (3)(2) kW 243,6 275,1 310,1 345,9 395,9 440,7 associated (3)(2) kW 243,6 275,1 310,1 345,9 395,9 440,7 associated (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 associated (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 associated (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 associated (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 associated (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 associated (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 associated (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 associated (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 associated (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 associated (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 associated (3)(2) kW/kW 4,400 4,410 4,410 4,410 4,370 4,380 4,390 associated (4)(2) continued (3)(2) kW/kW 4,400 4,410									
Para	,	(3)	k\/\	2/13/1	274.5	300.4	3/15/1	305.5	440.3
Name				- ,					- , -
CALDAMENTO (EN14511 VALUE) (3)(2) kW 243,6 275,1 310,1 345,9 395,9 440,7 34,80 4,300 4,410 4,410 4,370 4,380 4,300 4,410 4,410 4,470 4,370 4,380 4,300 4,410 4,410 4,470 4,370 4,380 4,300 4,410 4,470 4,370 4,380 4,300 4,410 4,410 4,470 4,370 4,380 4,300 4,410 4,470 4,370 4,380 4,300 4,410 4,470 4,370 4,380 4,300 4,410 4,470 4,370 4,380 4,300 4,300 4,410 4,470 4,370 4,380 4,300 4,300 4,410 4,470 4,370 4,380 4,300 4	P	(0)							
mza termica totale (3)(2) kW 243,6 275,1 310,1 345,9 395,9 440,7 29 (3)(2) kW/kW 4,400 4,410 4,410 4,370 4,380 4,300 se EUROVENT (CIENZA ENERGETICA (CIENZA ENERGETICA (CIENZA STAGIONALE IN RAFFREDDAMENTO (Reg. UE 2016/2281) (CIENZA STAGIONALE IN RISCALDAMENTO (Reg. UE 2016/2281) (4) kW			KVV/KVV	4,515	4,330	4,557	4,511	4,541	4,400
Security		(3)(2)	I/\//	242 6	275.1	210 1	245.0	20E 0	440.7
CICIENZA STAGIONALE IN RAFFREDDAMENTO (Reg. UE 2016/2281) Igerazione d'ambiente Igerazione Iger	enza termica totale P				,	,			
CIENZA ENERGETICA CIENZA STAGIONALE IN RAFFREDDAMENTO (Reg. UE 2016/2281) Eigerazione d'ambiente (11) kW -		(3)(2)	KVV/KVV	4,400	4,410	4,410	4,370	4,300	4,300
Clear Clea									
Seriation d'ambiente									
ed.c		DAMENTO	(Reg. UE	2016/2281)				
R	frigerazione d'ambiente								
Cliento ns	ated,c		kW						
CIENZA STAGIONALE IN RISCALDAMENTO (Reg. UE 813/2013) sign	ER	. ,. ,							
sign (4) kW 294 332 371 416	ndimento ηs				-	-	-	248	246
Company	ICIENZA STAGIONALE IN RISCALDA								
Commento ng	esign	(4)	kW	294	332	371	416	-	-
se di efficienza stagionale (4)	OP	(4)(14)		6,17	6,17	6,27	6,05	-	-
Sign	dimento ηs	(4)(15)	%	239	239	243	234	-	-
Company	sse di efficienza stagionale	(4)		-	-	-	-	-	-
Sedia Continue C	esign	(5)	kW	263	297	335	374	-	-
se di efficienza stagionale (5))P	(5)(14)		4,83	4,90	4,93	4,85	-	-
MBIATORE UTENZA IN REFRIGERAZIONE	ndimento ηs	(5)(15)	%	185	188	189	186	-	-
MBIATORE UTENZA IN REFRIGERAZIONE ata	sse di efficienza stagionale	(5)		-	-	-	-	-	-
Section Color Co	MBIATORI								
Section Color Co	AMBIATORE UTENZA IN REFRIGERA	ZIONE							
lita di carico allo scambiatore (1) kPa 18,1 20,0 21,3 24,9 28,2 34,6 MBIATORE UTENZA IN RISCALDAMENTO ata (3) I/s 15,34 17,33 19,54 21,77 24,99 27,73 ita di carico allo scambiatore (3) kPa 38,1 42,0 45,0 52,7 59,7 73,6 MBIATORE SORGENTE IN REFRIGERAZIONE ata (1) I/s 12,62 14,27 16,07 17,87 20,51 22,75 lita di carico allo scambiatore (1) kPa 17,4 19,6 22,0 24,8 30,0 36,1 MBIATORE SORGENTE IN RISCALDAMENTO ata (3) I/s 11,73 13,25 14,93 16,66 19,09 21,25 lita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 CUITO FRIGORIFERO compressori N° 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	tata		l/s	10.57	11.96	13.45	14.95	17.18	19.02
MBIATORE UTENZA IN RISCALDAMENTO ata (3)	dita di carico allo scambiatore	. ,							
State (3)		. ,	•	, .	,-		,-	,_	,-
lita di carico allo scambiatore (3) kPa 30,1 42,0 45,0 52,7 59,7 73,6 IMBIATORE SORGENTE IN REFRIGERAZIONE ata (1) l/s 12,62 14,27 16,07 17,87 20,51 22,75 lita di carico allo scambiatore (1) kPa 17,4 19,6 22,0 24,8 30,0 36,1 IMBIATORE SORGENTE IN RISCALDAMENTO ata (3) l/s 11,73 13,25 14,93 16,66 19,09 21,25 lita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 CUITO FRIGORIFERO compressori N° 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	tata		I/e	15 34	17.33	19 54	21 77	24 99	27 73
MBIATORE SORGENTE IN REFRIGERAZIONE ata (1) 1/s 12,62 14,27 16,07 17,87 20,51 22,75 18 18 19,6 22,0 24,8 30,0 36,1 18 18 18 18 19,6 22,0 24,8 30,0 36,1 18 18 18 18 18 18 18									
Act			u	00,.	,0	.0,0	02,.	00,.	. 0,0
lita di carico allo scambiatore (1) kPa 17,4 19,6 22,0 24,8 30,0 36,1 IMBIATORE SORGENTE IN RISCALDAMENTO ata (3) l/s 11,73 13,25 14,93 16,66 19,09 21,25 lita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 Ita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 Ita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 Ita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 Ita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 Ita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 Ita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 Ita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 Ita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 26,0 31,5 Ita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 26,0 26,0 26,0 26,0 26,0 26,0 26	tata		I/e	12.62	14 27	16.07	17 87	20 51	22.75
MBIATORE SORGENTE IN RISCALDAMENTO ata (3) Vs 11,73 13,25 14,93 16,66 19,09 21,25		. ,							
tata (3) I/s 11,73 13,25 14,93 16,66 19,09 21,25 lita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 CUITO FRIGORIFERO D'INTERISORIFERO TOURISORI (10) N° 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			in a	11,1	10,0	22,0	21,0	00,0	00,1
lita di carico allo scambiatore (3) kPa 15,1 16,9 19,0 21,6 26,0 31,5 CUITO FRIGORIFERO In the property of t	tata		1/6	11 73	13.25	14 03	16 66	19.00	21 25
CUITO FRIGORIFERO Impressori N° 4 4 4 4 4 4 4 4 4 4 7 4 7 4 7 4 7				, -					, -
N° 4 4 4 4 4 4 4 4 4		(3)	KPa	13,1	10,9	19,0	21,0	20,0	31,3
rouiti			N10	4	4	4	4	4	4
ca refrigerante teorica kg 23,1 25,5 29,9 37,7 44,5 44,6 ELLI SONORI sione sonora totale (6) dB(A) 70 71 72 73 74 74 74 74 74 75 75 88 89 90 91 91 91 91 75 75 75 75 75 75 75 75 75 75 75 75 75									
Column C									
sione sonora totale (6) dB(A) 70 71 72 73 74 74 nza sonora totale in refrigerazione (7)(8) dB(A) 87 88 89 90 91 91 91 nza sonora in riscaldamento (7)(9) dB(A) 88 89 90 91 92 92 ENSIONI E PESI (10) mm 2210 2650 2650 2650 2650 2650 2650 (10) mm 885 885 885 885 885 885 885 (10) mm 1805 1805 1805 1805 1805			кд	23,1	25,5	29,9	3/,/	44,5	44,6
nza sonora totale in refrigerazione (7)(8) dB(A) 87 88 89 90 91 91 91 nza sonora in riscaldamento (7)(9) dB(A) 88 89 90 91 92 92 ENSIONI E PESI (10) mm 2210 2650 2650 2650 2650 2650 2650 (10) mm 885 885 885 885 885 885 (10) mm 1805 1805 1805 1805 1805		(0)	15 (4)	70	7.	70	70		7.
enza sonora in riscaldamento (7)(9) dB(A) 88 89 90 91 92 92 ENSIONI E PESI (10) mm 2210 2650 2650 2650 2650 2650 (10) mm 885 885 885 885 885 885 (10) mm 1805 1805 1805 1805 1805		. ,							
ENSIONI E PESI (10) mm 2210 2650 2650 2650 2650 2650 (10) mm 885 885 885 885 885 885 (10) mm 1805 1805 1805 1805 1805 1805									
(10) mm 2210 2650 2		(7)(9)	dB(A)	88	89	90	91	92	92
(10) mm 885 885 885 885 885 885 (10) mm 1805 1805 1805 1805 1805 1805	NSIONI E PESI								
(10) mm 1805 1805 1805 1805 1805 1805			mm						
		. ,	mm	885	885			885	885
p in funzionamento (10) kg 1050 1240 1330 1530 1630 1710									
	so in funzionamento	(10)	kg	1050	1240	1330	1530	1630	1710


- 1
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C. Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]


 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente

NX2-W-G06-H

0042 - 0242 45.84-242.1 kW

Unità da interno per la produzione di acqua refrigerata/riscaldata con sorgente acqua, compressori Scroll con valvola di scarico intermedio (IDV), refrigerante R454B a basso GWP e che non danneggia l'ozono, scambiatori a piastre saldo-brasate e valvola di espansione elettronica di serie. Basamento, struttura e pannellatura in lamiera di acciaio zincato a caldo di adeguato spessore. Verniciatura di tutte le parti con polveri poliesteri che assicura una totale resistenza agli agenti atmosferici, verniciatura RAL 7035. La gamma comprende la versione a due compressori monocircuito.

Comando

Controllore elettronico W3000+

Il controllore W3000+ si caratterizza per le evolute funzioni e regolazioni proprietarie.

La tastiera Compact dispone di comandi funzionali e un display LCD per la gestione dell'unità mediante menu multi-lingua (19 lingue disponibili). La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità. È inoltre possibile programmare un profilo di funzionamento fino a 4 giorni tipo e 10 fasce orarie. Come opzione, è disponibile l'innovativa interfaccia utente KIPlink (Keyboard In your Pocket) che permette di operare sull'unità direttamente da smartphone e tablet.

La termoregolazione si basa sull'esclusivo algoritmo Quick-Mind, dotato di logiche auto-adattative, utili nei sistemi con ridotto contenuto d'acqua. In alternativa sono impostabili regolazioni proporzionale o proporzionale-integrale.

Per sistemi a più unità è possibile la regolazione delle risorse tramite dispositivi proprietari opzionali. Inoltre, può essere attuata la contabilizzazione dei consumi/prestazioni. Il controllo a portata idraulica variabile è previsto di standard (funzione VPF.E).

La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet-over-IP, Bacnet MS/TP RS485, Konnex, ModBus TCP/IP, SNMP. Compatibilità con tastiera remota (gestione fino a 8 unità).

Refrigerante

Versioni

- Base

Configurazioni

- Funzione base

D Funzione recupero parziale del calore di condensazione

Caratteristiche

ELEVATA EFFICIENZA

Elevata efficienza a carico pieno e parziale, ai migliori livelli di mercato. Queste unità garantiscono bassi costi di esercizio e quindi un rapido ritorno dell'investimento.

REFRIGERANTE A BASSO GWP

Refrigerante di nuova generazione R454B che assicura una riduzione del GWP pari al 76% (GWP R454B = 467, GWP R410A = 1924 secondo IPCC 5a revisione), e un impatto sullo strato di ozono nullo.

PROGETTAZIONE DI SICUREZZA

Gamma con refrigerante A2L interamente progettata per rispondere al meglio ai requisiti di sicurezza per l'installazione in sala macchine.

Comprende nuove strategie di valutazione dei rischi in accordo con le più recenti normative, nuovo design dei componenti nel vano compressore e del quadro elettrico separato e installazione di standard dei dispositivi per rilevamento e gestione delle eventuali perdite di refrigerante (leak detector e valvole) per un tempestivo spegnimento dell'unità in caso di perdite.

ErP READY

Le elevatissime efficienze ai carichi parziali consentono di soddisfare e superare le efficienze stagionali per il riscaldamento SCOP (solo per unità reversibili) e per il raffreddamento SEER, definite dalle direttive per la progettazione ecosostenibile. Superando anche i requisiti minimi di efficienza energetica stagionale richiesti a partire dal 2021.

PORTATA VARIABILE

Regolazione avanzata delle pompe inverter a seconda del carico richiesto che consente di ridurre i consumi elettrici e garantire il funzionamento dell'unità anche in condizioni critiche.

MASSIMA SILENZIOSITA'

Elevata silenziosità abbinata ad un'alta efficienza, grazie ad accorgimenti acustici dedicati e ad una progettazione mirata nella scelta dei componenti.

CONTROLLO INTEGRATO DELLA CONDENSAZIONE

L'elettronica delle unità è in grado di gestire il controllo della condensazione più adatto per ogni tipologia di applicazione: valvola pressostatica, valvola modulante a due o tre vie, segnale 0-10V per controllo pompe con inverter.

COMPLETA VERSATILITA'

Unità progettate prevedendo una serie di accessori integrati per il funzionamento con acqua a perdere (pozzo, falda, ecc.), dry cooler o torre evaporativa e per sonde geotermiche in grado così di soddisfare ogni esigenza impiantistica.

VALVOLA DI ESPANSIONE ELETTRONICA DI SERIE

La valvola di espansione elettronica migliora l'efficienza dell'unità, soprattutto in presenza di variabilità di carico e di temperatura della sorgente. Tutto ciò si traduce in una riduzione dei consumi, una rapida messa a regime e un' estensione dei limiti operativi.

- Tastiera interfaccia Touch Screen
- Interfaccia utente KIPlink
- Cofanatura insonorizzante per riduzione delle emissioni acustiche.
- Avviatori "Soft-start"
- Multi Manager funzioni LAN
- Sonda aria esterna per compensazione setpoint acqua impianto
- Sistema VPF (Variable Primary Flow)
- Dispositivo controllo della condensazione: valvola pressostatica, modulante a due-tre vie ed inverter

NX2-W-G06			0042	0052	0062	0072	0082	0092	0112
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera `	(1)	kW	45,84	53,92	64,85	73,47	82,96	94,45	108,5
Potenza assorbita totale	(1)	kW	10,04	11,34	13,18	14,94	16,13	18,48	21,38
EER	(1)	kW/kW	4,580	4,770	4,909	4,933	5,155	5,103	5,070
REFRIGERAZIONE (EN14511 VALUE)									
Potenza frigorifera	(1)(2)	kW	45,70	53,80	64,70	73,30	82,80	94,30	108,3
EER	(1)(2)	kW/kW	4,390	4,560	4,740	4,720	5,000	4,970	4,930
Classe EUROVENT	. , , ,		-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)									
Potenza termica totale	(3)	kW	53.53	62.61	73.37	83.31	92.62	105.4	121.3
Potenza assorbita totale	(3)	kW	12,48	14,27	16,52	18,63	20,60	23,70	27,20
COP	. ,	kW/kW	4,280	4,378	4,448	4,478	4,495	4,447	4.460
RISCALDAMENTO (EN14511 VALUE)			1,200	.,	.,	.,	.,	.,	.,
Potenza termica totale	(3)(2)	kW	53,60	62,70	73,50	83,50	92,70	105,5	121,5
COP	(3)(2)	kW/kW	4.040	4,120	4,230	4.250	4,320	4,280	4.290
Classe EUROVENT	(3)(-)	1044/1044	1,040	1,120	1,200	1,200	1,020	1,200	1,200
EFFICIENZA ENERGETICA									
	AMENTO	/Por UF	2046/22041						
FFICIENZA STAGIONALE IN RAFFREDD	AMENIO	(Keg. UE	2016/2281)						
Refrigerazione d'ambiente	(4.4)								
Prated,c	(11)	kW	-	-	-	-	-	-	-
BEER	(11)(12)		-	-	-	-	-	-	-
Rendimento ηs	(11)(13)	%	-	-	-	-	-	-	-
FFICIENZA STAGIONALE IN RISCALDA									
PDesign	(4)	kW	63,3	74,1	87,2	98,9	110	125	144
SCOP	(4)(14)		6,29	6,54	6,74	6,71	6,87	6,89	6,83
Rendimento ηs	(4)(15)	%	243	254	262	261	267	268	265
Classe di efficienza stagionale	(4)		A+++	A+++	-	-	-	-	-
PDesign	(5)	kW	58,8	68,7	80,4	91,4	101	115	133
SCOP	(5)(14)		4,48	4,64	4,76	4,78	4,97	4,93	4,93
Rendimento ηs	(5)(15)	%	171	178	182	183	191	189	189
Classe di efficienza stagionale	(5)		A+++	A+++	-	-	-	-	-
SCAMBIATORI									
SCAMBIATORE UTENZA IN REFRIGERAZ	ZIONE								
Portata	(1)	l/s	2,192	2,579	3,101	3,513	3,967	4,517	5,188
Perdita di carico allo scambiatore	(1)	kPa	36,4	39,4	25,3	24,8	25,1	25,2	27,4
SCAMBIATORE UTENZA IN RISCALDAMI	ENTO		,	,	,	,	,	,	,
Portata	(3)	l/s	3,331	3,920	4,609	5,243	5,837	6,622	7,632
Perdita di carico allo scambiatore	(3)	kPa	84,1	91,1	55,8	55,3	54,3	54,2	59,4
SCAMBIATORE SORGENTE IN REFRIGE		III G	01,1	01,1	00,0	00,0	01,0	01,2	00,1
Portata	(1)	l/s	2,660	3,107	3,716	4,210	4,721	5,380	6,186
Perdita di carico allo scambiatore	(1)	kPa	26.8	26.6	32,0	37,7	17,1	17,0	17,5
SCAMBIATORE SORGENTE IN RISCALDA	. ,	NFa	20,0	20,0	32,0	51,1	17,1	17,0	17,5
		1/-	0.504	2.000	2.540	4.004	4 474	E 007	E 0.E.7
Portata	(3)	l/s	2,584	3,022	3,542	4,021	4,471	5,087	5,857
Perdita di carico allo scambiatore	(3)	kPa	25,3	25,2	29,0	34,4	15,3	15,2	15,7
CIRCUITO FRIGORIFERO				_	_	_	_	_	
I. compressori		N°	2	2	2	2	2	2	2
I. circuiti		N°	1	1	1	1	1	1	1
Carica refrigerante teorica		kg	3,40	4,70	5,00	6,00	7,20	8,60	9,90
IVELLI SONORI									
Pressione sonora totale	(6)	dB(A)	57	58	59	61	61	63	63
Potenza sonora totale in refrigerazione	(7)(8)	dB(A)	73	74	75	77	77	80	80
Potenza sonora in riscaldamento	(7)(9)	dB(A)	74	75	76	78	78	81	81
DIMENSIONI E PESI									
JINIENSIONI E PESI			1070	1070	4070	4070	4070	4750	1750
	(10)	mm	1370	1370	1370	1370	1370	1750	1750
A B	(10) (10)	mm mm	1370 885	1370 885	1370 885	885	885	885	885
4									

- 1
- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C. Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche
- 4
- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente

POMPE DI CALORE NX2-W-G06-H

0042 - 0242 45,84-242,1 kW

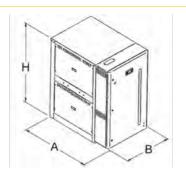
NX2-W-G06			0122	0142	0162	0182	0202	0222	0242
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera	(1)	kW	122,6	142,0	157.2	184.6	200.2	217,8	242,1
Potenza assorbita totale	(1)	kW	23,89	27,78	31.48	36,25	38,67	42,78	48,13
EER	(1)	kW/kW	5,130	5,108	4,990	5,099	5,173	5,089	5,033
REFRIGERAZIONE (EN14511 VALUE)	()		0,.00	0,.00	.,000	0,000	0,	0,000	0,000
Potenza frigorifera	(1)(2)	kW	122,4	141,7	156,9	184,3	199,8	217,4	241,7
EER	(1)(2)	kW/kW	4.980	4,960	4.830	4.920	5.000	4,910	4.840
Classe EUROVENT	(· /(=/	10071000	-,500	-,500	-,000	-,520	-	-,510	-,040
RISCALDAMENTO (GROSS VALUE)									
Potenza termica totale	(3)	kW	136.8	158.9	176.7	207.4	222.9	244.9	275.6
Potenza assorbita totale	(3)	kW	30,28	35,51	39,67	45,64	48,79	53,93	59,93
COP	(3)	kW/kW	4,515	4,476	4,451	4,548	4,568	4,544	4,601
		KVV/KVV	4,010	4,470	7,701	4,040	4,500	4,044	4,001
RISCALDAMENTO (EN14511 VALUE) Potenza termica totale	(3)(2)	kW	136.9	159.1	176.9	207.6	223.2	245.3	275.9
COP	(3)(2)	kW/kW	/ -	/	- , -	- , -	4,390	- , -	- , -
Classe EUROVENT	(3)(2)	KVV/KVV	4,350	4,310	4,280	4,350	4,390	4,340	4,360
EFFICIENZA ENERGETICA		(D	0040/000						
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente									
Prated,c	(11)	kW	-	-	-	-	-	-	-
SEER	(11)(12)		-	-	-	-	-	-	-
Rendimento ηs	(11)(13)	%	-	-	-	-	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA			13/2013)						
PDesign	(4)	kW	163	189	210	247	265	291	325
SCOP	(4)(14)		6,83	6,83	6,78	6,81	6,81	7,13	6,61
Rendimento ηs	(4)(15)	%	265	265	263	264	264	277	256
Classe di efficienza stagionale	(4)		-	-	-	-	-	-	-
PDesign	(5)	kW	150	175	194	227	244	269	302
SCOP	(5)(14)		4,93	4,94	4,86	4,89	4,97	5,14	4,84
Rendimento ηs	(5)(15)	%	189	190	186	188	191	197	186
Classe di efficienza stagionale	(5)		-	-	-	-	-	-	-
SCAMBIATORI									
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE								
Portata	(1)	l/s	5,865	6,788	7,519	8,830	9,572	10,41	11,58
Perdita di carico allo scambiatore	(1)	kPa	27,7	28,2	28,4	32,3	29,2	34,3	41,5
SCAMBIATORE UTENZA IN RISCALDAM	ENTO								
Portata	(3)	l/s	8.631	10.00	11.11	13.10	14,11	15,48	17.47
Perdita di carico allo scambiatore	(3)	kPa	60.1	61.2	62.0	71.2	63.4	75.7	94.6
SCAMBIATORE SORGENTE IN REFRIGE	RAZIONE		,	,	,	,	,	,	,
Portata	(1)	l/s	6.981	8.086	8.988	10.52	11.38	12.41	13.82
Perdita di carico allo scambiatore	(1)	kPa	18.3	18.9	23.0	23.7	25,3	26.0	31.9
SCAMBIATORE SORGENTE IN RISCALD			. 0,0	. 0,0	20,0	20,.	20,0	20,0	01,0
Portata	(3)	l/s	6.602	7.671	8.529	10.01	10.76	11.82	13,30
Perdita di carico allo scambiatore	(3)	kPa	16,3	17,0	20,7	21,4	22,7	23,5	29,6
CIRCUITO FRIGORIFERO	(0)	iti a	10,0	17,0	20,1	۷1,7	22,1	20,0	20,0
N. compressori		N°	2	2	2	2	2	2	2
N. circuiti		N°	1	1	1	1	1	1	1
Carica refrigerante teorica			11,3	12,5	13,3	16.3	19,3	19.7	19.8
		kg	11,3	12,0	13,3	10,3	18,3	13,1	19,0
LIVELLI SONORI	(6)	dD/A)	62	69	70	70	70	72	72
Pressione sonora totale	. ,	dB(A)	63 80		70 87	70 87	70 87	89	
Potenza sonora totale in refrigerazione	(7)(8)	dB(A)		86					89
Potenza sonora in riscaldamento	(7)(9)	dB(A)	81	87	88	88	88	90	90
DIMENSIONI E PESI	(10)		4750	4750	4750	4750	4750	4750	,
A	(10)	mm	1750	1750	1750	1750	1750	1750	1750
В	(10)	mm	885	885	885	885	885	885	885
H	(10)	mm	1805	1805	1805	1805	1805	1805	1805
Peso in funzionamento	(10)	kg	700	770	820	860	890	960	970

Note

- Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente (in/out) 30°C/35°C. Valori riferiti alla normativa EN14511 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente (in/out) 10°C/7°C Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche

- AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 5 Parametro calcolato per applicazione a MEDIA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]


 6 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- 7 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 8 Potenza sonora in refrigerazione, indoors.
 9 Potenza sonora in riscaldamento, indoors.
 10 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 11 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 12 Indice di efficienza energetica stagionale
 13 Efficienza energetica stagionale del raffreddamento d'ambiente
 14 Coefficiente di prestazione stagionale
 15 Efficienza energetica stagionale del riscaldamento d'ambiente

FOCS2-W-G05

/H 8103 - 9604 2024-2416 kW

Pompa di calore ad alta efficienza con sorgente acqua, reversibile lato idraulico

Unità da interno per la produzione di acqua refrigerata/riscaldata. Compressori a vite ottimizzati per lavorare con bassi rapporti di compressione, utilizzo di R513A, condensatore a fascio tubiero, evaporatore ad espansione secca e valvola di regolazione elettronica. Struttura portante in acciaio zincato e verniciato con polveri poliestere. Unità ad alta efficienza: l'impiego di compressori dedicati e di scambiatori caratterizzati da alti coefficienti di scambio termico, permettono di raggiungere valori di EER pari a 5,1 (versione CA) e fino a 5,6 (versione CA-E) alle condizioni di lavoro standard per Eurovent.

Comando

W3000TE

W3000TE presenta una tastiera di ampio formato e display LCD per un facile e sicuro accesso alle impostazioni della macchina. Il menu multi-livello con lingua selezionabile e icone led permette di visualizzare le condizioni di funzionamento dei vari componenti. Come opzione è disponibile un'interfaccia touch con display a colori 7", retro illuminazione regolabile a led e porta USB. La diagnostica comprende una completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC).

Per sistemi a più unità è possibile la regolazione delle risorse con dispositivi proprietari opzionali. Può inoltre essere attuata la contabilizzazione dei consumi/prestazioni. La supervisione è realizzabile con dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet. La termoregolazione si caratterizza per la modulazione continua della capacità, basata su algoritmi PID e riferita alla temperatura di mandata dell'acqua.

Refrigerante

Versioni

CA Versione alta efficienza

CA-E Versione ad altissima efficienza, oltre la Classe A

Configurazioni

H Funzione pompa di calore con reversibilità lato idraulico

Caratteristiche

ELEVATA EFFICIENZA

Versione 'CA-E' con efficienza eccedente la 'Classe A' di Eurovent. Grazie alle soluzioni tecnologiche adottate, queste unità garantiscono i minori costi di esercizio e quindi un rapido ritorno dell'investimento.

ADATTABILITA'

Adattabilità alle esigenze dell'impianto grazie alla modulazione continua della capacità termica, garantita da sofisticate logiche di regolazione e dalla precisione nel controllo, a beneficio dell'efficienza.

SILENZIOSITA

Silenziosità dell'unità garantita dall'attenta progettazione. La cofanatura integrale, laddove richiesta, abbassa ulteriormente il livello sonoro oltre i migliori livelli di mercato.

- Kit HWT, High Water Temperature, per la produzione di acqua calda fino a 60°C
- Cofanatura integrale (tipologia base o plus)
- Sistema VPF (Variable Primary Flow)
- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet

EOCS2 W COE IL ICA			0402	0003	0004	0604	
FOCS2-W-G05 /H /CA			8103	9003	9004	9604	
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	
PRESTAZIONI							
REFRIGERAZIONE (GROSS VALUE)							
Potenza frigorifera	(1)	kW	2024	2236	2278	2416	
Potenza assorbita totale	(1)	kW	417,3	460,6	469,7	498,3	
EER	(1)	kW/kW	4,850	4,855	4,850	4,848	
REFRIGERAZIONE (EN14511 VALUE)			-				
Potenza frigorifera	(1)(2)	kW	2018	2228	2273	2410	
EER	(1)(2)	kW/kW	4.710	4.700	4.730	4.720	
Classe EUROVENT	()(-)	,	-	-,700	-,700	-,120	
RISCALDAMENTO (GROSS VALUE)							
Potenza termica totale	(3)	kW	2245	2456	2604	2763	
Potenza termica totale	(3)	kW	515,5	567.2	587,6	623.8	
COP	(3)	kW/kW		,		4,429	
		KVV/KVV	4,355	4,330	4,432	4,429	
RISCALDAMENTO (EN14511 VALUE)	(0)(0)		2052	0.404	2212	0700	
Potenza termica totale	(3)(2)	kW	2250	2461	2610	2769	
OP	(3)(2)	kW/kW	4,250	4,240	4,290	4,280	
Classe EUROVENT							
FFICIENZA ENERGETICA							
FFICIENZA STAGIONALE IN RAFFREDD	AMENTO	(Reg. UE	2016/2281)				
Refrigerazione d'ambiente		,g. J=					
rated.c	(10)	kW	_	_		-	
EER	(10)(11)	KVV	-	-	-	-	
	(10)(11)	%			-		
endimento ηs	. , , ,		-	-	-	-	
FFICIENZA STAGIONALE IN RISCALDAN			3/2013)				
Design	(4)	kW	-	-	-	-	
COP	(4)(13)		-	-	-	-	
endimento ηs	(4)(14)	%	-	-	-	-	
lasse di efficienza stagionale	(4)		-	-	-	-	
CAMBIATORI							
CAMBIATORE UTENZA IN REFRIGERAZ	IONE						
ortata	(1)	l/s	96.81	106.9	108.9	115,5	
erdita di carico allo scambiatore	(1)	kPa	43.7	53.3	32.3	36.3	
CAMBIATORE UTENZA IN RISCALDAME	. ,	iti d	10,1	00,0	02,0	00,0	
ortata	(3)	l/s	112.5	112.5	163.5	173.4	
Perdita di carico allo scambiatore	(3)	kPa	59.0	59.0	72.7	81.9	
	. ,	кга	59,0	59,0	12,1	01,9	
SCAMBIATORE SORGENTE IN REFRIGER		.,	440.0	100.1	400.0	400.0	
Portata	(1)	I/s	116,3	128,4	130,8	138,8	
Perdita di carico allo scambiatore	(1)	kPa	35,0	36,3	35,5	37,4	
CAMBIATORE SORGENTE IN RISCALDA	MENTO						
ortata	(3)	l/s	108,4	118,5	125,7	133,4	
erdita di carico allo scambiatore	(3)	kPa	30,4	31,0	32,8	34,6	
IRCUITO FRIGORIFERO							
. compressori		N°	3	3	4	4	
l. circuiti		N°	3	3	4	4	
arica refrigerante teorica		kg	283	275	281	273	
IVELLI SONORI		кy	200	210	201	213	
	(E)	-ID/A\	00	00	00	00	
ressione sonora totale	(5)	dB(A)	82	82	82	82	
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	102	102	102	102	
otenza sonora in riscaldamento	(6)(8)	dB(A)	0	0	0	0	
IMENSIONI E PESI							
4	(9)	mm	4950	4950	4650	4650	
3	(9)	mm	1700	1700	2250	2250	
H	(9)	mm	2150	2150	2230	2230	
Peso in funzionamento	(9)	kg	10170	10350	14330	14390	
	ν-/	9					

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente
- Acqua scanninatore cator ato trenza (in/out) 40 -/45 C, Acqua scanninatore tato sorgente (in/out) 10°C/6,57°C

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, indoors.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 Indice di efficienza energetica stagionale
 Efficienza energetica stagionale del raffreddamento d'ambiente
 Goefficiente di prestazione stagionale
 Efficienza energetica stagionale del riscaldamento d'ambiente

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R513A [GWP₁₀₀ 631] ad effetto serra. Dati certificati in EUROVENT

101

S2-W-G05

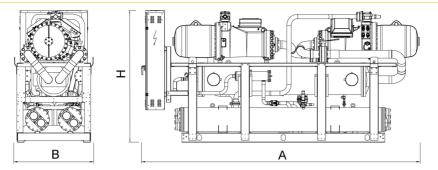
Pompa di calore ad alta efficienza con sorgente acqua, reversibile lato idraulico

/H 8103 - 9604 2024-2416 kW

FOCS2-W-G05 /H /CA-E			7204	7804	8404
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50
PRESTAZIONI		V/PII/112	100/0/00	100/0/00	100/0/00
REFRIGERAZIONE (GROSS VALUE)					
	(1)	kW	2025	2157	2294
Potenza frigorifera	(1)			401,7	
Potenza assorbita totale	. ,	kW	375,9		427,5
EER	(1)	kW/kW	5,387	5,370	5,366
REFRIGERAZIONE (EN14511 VALUE)	(4)(0)	1.107	0040	0440	0000
Potenza frigorifera	(1)(2)	kW	2019	2149	2286
EER	(1)(2)	kW/kW	5,190	5,140	5,140
Classe EUROVENT			-	-	-
RISCALDAMENTO (GROSS VALUE)					
Potenza termica totale	(3)	kW	2253	2371	2563
Potenza assorbita totale	(3)	kW	473,2	504,4	537,7
COP		kW/kW	4,761	4,701	4,767
RISCALDAMENTO (EN14511 VALUE)					
Potenza termica totale	(3)(2)	kW	2260	2378	2571
COP	(3)(2)	kW/kW	4,560	4,520	4,530
Classe EUROVENT					
EFFICIENZA ENERGETICA					
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)		
Refrigerazione d'ambiente			,		
Prated,c	(10)	kW	_	_	_
SEER	(10)(11)		-	-	-
Rendimento ηs	(10)(12)	%	-	-	-
EFFICIENZA STAGIONALE IN RISCALDA			3/2013)		
PDesign	(4)	kW	-	_	_
SCOP	(4)(13)	17.4.4			
Rendimento ns	(4)(14)	%			
Classe di efficienza stagionale	(4)	70	-	-	-
SCAMBIATORI	(+)				
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE				
		1/-	00.00	400.0	400.7
Portata	(1)	l/s	96,82	103,2	109,7
Perdita di carico allo scambiatore	. ,	kPa	41,3	59,3	54,6
SCAMBIATORE UTENZA IN RISCALDAN					
Portata	(3)	l/s	144,1	129,4	160,0
Perdita di carico allo scambiatore	(3)	kPa	91,5	93,4	116
SCAMBIATORE SORGENTE IN REFRIGE					
Portata	(1)	l/s	114,4	121,9	129,7
Perdita di carico allo scambiatore	(1)	kPa	52,6	54,0	54,5
SCAMBIATORE SORGENTE IN RISCALD	DAMENTO				
Portata	(3)	l/s	108,8	114,4	123,7
Perdita di carico allo scambiatore	(3)	kPa	47,5	47,5	49,6
CIRCUITO FRIGORIFERO	`,'		,-	,	-,-
N. compressori		N°	4	4	4
N. circuiti		N°	4	4	4
Carica refrigerante teorica		kg	336	366	366
LIVELLI SONORI		ry	330	300	300
	/E\	dD/A)	00	00	00
Pressione sonora totale	(5)	dB(A)	82	82	82
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	102	102	102
Potenza sonora in riscaldamento	(6)(8)	dB(A)	0	0	0
DIMENSIONI E PESI					
Α	(9)	mm	5220	4900	4900
В	(9)	mm	2250	2250	2250
	(9)	mm	2305	2455	2455
Н	٠,	1111111			
H Peso in funzionamento	(9)	kg	13720	15850	16100

Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.


 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente
- Acqua scannibatore caro lato trenza (in/out) 40 -0/45 C, Acqua scannibatore lato sorgene (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, indoors.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 REGOLAMENTO (UE) N. 2016/2281

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R513A [GWP₁₀₀ 631] ad effetto serra.

0551 - 1752 124,3-400,6 kW

Unità da interno per la produzione di acqua riscaldata/refrigerata con compressori a vite di tipo semiermetico ottimizzati per lavorare con bassi rapporti di compressione e per l'utilizzo di R513A, evaporatore a fascio tubiero di progettazione Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A., condensatore a fascio tubiero e valvola di espansione elettronica. Struttura portante in acciaio zincato e verniciato con polveri poliesteri. Certificazione Eurovent. Unità caratterizzata da estrema compattezza, grazie al particolare layout costruttivo senza basamento e pannellatura, e da elevata flessibilità per adeguarsi alle più diverse condizioni di carico grazie all'accurata termoregolazione. La progettazione ottimale di tutti i componenti interni assicura un alto livello di prestazioni, efficienza energetica e affidabilità.

Comando

Controllore elettronico W3000TE

W3000TE con evolute logiche proprietarie, tastiera di ampio formato e display LCD per un facile e sicuro accesso alle impostazioni della macchina.

- Menu multi-livello con lingua impostabile a scelta per l'immediata visualizzazione delle condizioni di funzionamento dei circuiti.
- Completa gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità.
- Orologio programmatore per la creazione di profili di funzionamento fino a 4 giorni tipo e 10 fasce orarie.

Per sistemi a più unità è possibile la regolazione delle risorse tramite dispositivi proprietari opzionali. Inoltre può essere attuata la contabilizzazione dei consumi e delle prestazioni. Supervisione realizzabile tramite dispositivi proprietari o con integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, LonWorks. Compatibilità con tastiera remota (gestione fino a 8 unità).

La termoregolazione avviene grazie alla modulazione continua della capacità, con logica proporzionale a gradini, in base alla temperatura di mandata dell'acqua.

Come opzione (pacchetto VPF), viene integrata la modulazione della capacità con la modulazione della portata idraulica, tramite pompe inverter e risorse dedicate per il circuito idraulico.

Refrigerante

Versioni

- Base

Configurazioni

H Funzione pompa di calore con reversibilità lato idraulico

Caratteristiche

REFRIGERANTE A BASSO GWP

Refrigerante R513A, caratterizzato da effetto serra ridotto (GWP R513A = 572, GWP R134a = 1300 secondo IPCC) e zero impatto sullo strato di ozono. Non infiammabile (ASHRAE 34, ISO 817: classe A1).

ErP READY

Le elevatissime efficienze ai carichi parziali consentono di soddisfare e superare le efficienze stagionali per il riscaldamento SCOP (solo per unità reversibili) e per il raffreddamento SEER, definite dalle direttive per la progettazione ecosostenibile. Superando anche i requisiti minimi di efficienza energetica stagionale richiesti a partire dal 2021.

MASSIMA COMPATTEZZA

Massima compattezza che consente flessibilità di progettazione e installazione anche in presenza di spazi ridotti oppure in caso di sostituzione di unità in sede di riqualificazione di impianti preesistenti.

VALVOLA DI ESPANSIONE ELETTRONICA DI SERIE

L'utilizzo della valvola di espansione elettronica apporta notevoli benefici specie in presenza di variabilità di carico e di temperatura della sorgente. La sua introduzione garantisce una ottimizzazione delle efficienze alle diverse condizioni di lavoro che si traduce in una riduzione dei consumi di esercizio, una più rapida messa a regime dell'unità ed una estensione dei limiti operativi.

ADATTABILITA'

Adattabilità alle esigenze dell'impianto grazie alla modulazione continua della capacità frigorifera, garantita da sofisticate logiche di regolazione e dalla precisione nel controllo, a beneficio dell'efficienza.

- Kit HWT, High Water Temperature
- Sistema VPF (Variable Primary Flow)
- Dispositivi vari per il controllo della condensazione
- Predisposizione connettività remota con schede protocollo ModBus, Echelon, Bacnet, Bacnet over-IP.
- · Tastiera interfaccia Touch Screen
- Interfaccia utente KIPlink

Almentazione elettrica Vjph/Hz 400/3/50 400/3/5	FX-W-G05/H			0551	0651	0751	0851	0951	1102
REFRICENZIONE (GROSS VALUE)	Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Potenza frigorifera	PRESTAZIONI								
Potenza frigorifera	REFRIGERAZIONE (GROSS VALUE)								
Potenza assorbita totale		(1)	kW	124 3	140.5	166.3	198 2	221 7	252 4
EFF.									
REFRICERAZIONE (EN14511 VALUE)									
Polenza figorifera (1)/2 kW 123,9 140,1 165,8 197,5 220,8 251,4 267 268 267,0 267,0 268 267,0 268 267,0 268 267,0 268 267,0 267,0 268 267,0 268 267,0 268 267,0 268 267,0 267,0 268 267,0 26		(.,	IXVV/IXVV	4,070	7,077	4,071	7,007	4,000	4,040
ERR		(1)(2)	الا\\\ الالا	123.0	1/0 1	165.8	107 5	220.8	251 /
Classe EUROVENT									
RISCALDAMENTO (GROSS VALUE) 3		(1)(2)	KVV/KVV	,	-,700	,	-,720	,	4,770
Potenza stermica totale (3)									
Potenza assorbita totale Corp		(3)	الا\\\ الالا	1/12 /	161.8	101.6	225.6	253.5	287 0
RISCALDAMENTO (EN14511 VALUE)					, -				
RISCALDAMENTO (EN14511 VALUE) Potenza termica totale (3)(2) kW 142,8 162,3 192,2 226,2 254,2 288,6 COP Classe EUROVENT EFFICIENZA ENERGETICA EFFICIENZA STAGIONALE IN RAFFREDDAMENTO (Reg. UE 2016/2281) EFFICIENZA STAGIONALE IN RAFFREDDAMENTO (Reg. UE 313/2013) EFFICIENZA STAGIONALE IN RISCALDAMENTO (Reg. UE 313/2013) PDesign (4) kW 169 190 227 269 299 341 EFFICIENZA STAGIONALE IN RISCALDAMENTO (Reg. UE 313/2013) PDesign (4) kW 169 190 227 269 299 341 EFFICIENZA STAGIONALE IN RISCALDAMENTO (Reg. UE 313/2013) PDesign (4) kW 169 190 227 269 299 341 EFFICIENZA STAGIONALE IN RISCALDAMENTO (Reg. UE 313/2013) PDesign (4) kW 169 190 227 269 299 341 EVENTORIA (REG. UE 2016/2014) EVENTORIA (REG. UE 2016/2014) POLICA STAGIONALE IN RISCALDAMENTO (Reg. UE 313/2013) PDesign (4) kW 169 190 227 269 299 249 241 EVENTORIA (REG. UE 2016/2014) EV		(5)							
Potenta termica totale (3)(2) k/W 41,80 142,8 162,3 192,2 226,2 254,2 288,6			KVV/KVV	4,203	4,043	4,240	4,390	4,000	4,323
COP		(3)(2)	LAM	1/2 0	162.2	102.2	226.2	254.2	200 6
Classe ClROVENT September Classe Class		. , . ,		,-	, -	, -	- /	- /	
		(3)(2)	KVV/KVV	4,150	4,210	4,090	4,220	4,130	4,140
Perfolación									
Refrigerazione d'ambiente Prated, c 10 kW - - - - - - - - -	_								
Prate C		DAMENTO	(Reg. UE	2016/2281)					
SEER									
Rendimento ns		` '	kW	-	-	-	-	-	-
Pricienza Stagionale in Riscaldamento (Reg. UE 813/2013)		. ,. ,		-	-	-	-	-	-
PDesign (4)	Rendimento ηs	(10)(12)	%	-	-	-	-	-	-
SCOP (4)(13) 5,70 5,67 5,56 5,49 5,43 5,63	EFFICIENZA STAGIONALE IN RISCALDA		Reg. UE 8'	13/2013)					
Rendimento ns			kW	169	190		269	299	
Classe di efficienza stagionale (4) - - - - - - - - -	SCOP	(4)(13)			5,67		5,49		5,63
SCAMBIATORI SCAMBIATORE UTENZA IN REFRIGERAZIONE Portata	Rendimento ηs	(4)(14)	%	220	219	215	212	209	217
SCAMBIATORE UTENZA IN REFRIGERAZIONE	Classe di efficienza stagionale	(4)		-	-	-	-	-	-
Portata	SCAMBIATORI								
Perdita di carico allo scambiatore (1) kPa 19,8 19,7 27,6 32,9 41,2 41,0	SCAMBIATORE UTENZA IN REFRIGERA	ZIONE							
Perdita di carico allo scambiatore (1) kPa 19,8 19,7 27,6 32,9 41,2 41,0	Portata	(1)	l/s	5.944	6.719	7.954	9.478	10.60	12.07
SCAMBIATORE UTENZA IN RISCALDAMENTO	Perdita di carico allo scambiatore	(1)	kPa	19.8	19.7	27.6	32.9	41.2	41.0
Portata (3)		IENTO		- , -	-,	,-	- /-	,	,-
Perdita di carico allo scambiatore (3) kPa 44,0 44,6 61,7 73,2 91,8 90,7			l/s	8 853	10 11	11 89	14 13	15.82	17 96
SCAMBIATORE SORGENTE N REFRIGERAZIONE					- /	,	, -		,
Portata (1) I/s 7,133 8,045 9,611 11,37 12,75 14,45 Perdita di carico allo scambiatore (1) kPa 22,1 25,9 31,0 27,0 26,5 22,7 SCAMBIATORE SORGENTE IN RISCALDAMENTO Portata (3) I/s 6,871 7,808 9,249 10,89 12,24 13,90 Perdita di carico allo scambiatore (3) kPa 20,5 24,4 28,7 24,7 24,5 21,0 Perdita di carico allo scambiatore (3) kPa 20,5 24,4 28,7 24,7 24,5 21,0 CIRCUITO FRIGORIFERO N. compressori N° 1 1 1 1 1 1 1 2 N. circuiti N° 1 1 1 1 1 1 1 2 Carica refrigerante teorica kg 23,1 33,6 31,5 58,8 56,7 46,2 LIVELLI SONORI Pressione sonora totale (5) dB(A) 75 75 76 76 76 76 78 Potenza sonora totale in refrigerazione (6)(7) dB(A) 92 92 93 93 93 93 95 Potenza sonora in riscaldamento (6)(8) dB(A) 92 92 93 93 93 95 DIMENSIONI E PESI A (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 960 1100 H (9) mm 1500 1500 1500 1500 1500 1500 1500		. ,	NI U	11,0	1 7,0	01,7	10,2	01,0	50,1
Perdita di carico allo scambiatore (1) kPa 22,1 25,9 31,0 27,0 26,5 22,7 25,0			I/e	7 133	8 045	9 611	11 37	12 75	14 45
SCAMBIATORE SORGENTE IN RISCALDAMENTO Portata (3) I/s 6,871 7,808 9,249 10,89 12,24 13,90 Perdita di carico allo scambiatore (3) kPa 20,5 24,4 28,7 24,7 24,5 21,0 CIRCUITO FRIGORIFERO N. circuiti N° 1 1 1 1 1 1 1 1 2 Carica refrigerante teorica kg 23,1 33,6 31,5 58,8 56,7 46,2 LIVELLI SONORI Pressione sonora totale (5) dB(A) 75 75 76 76 76 78 Potenza sonora totale in refrigerazione (6)(7) dB(A) 92 92 93 93 93 95 Potenza sonora in riscaldamento (6)(8) dB(A) 92 92 93 93 93 95 DIMENSIONI E PESI A (9) mm 2400 2600 2700		٠,			-,	- , -	, -		, -
Portata (3) I/s 6,871 7,808 9,249 10,89 12,24 13,90 Perdita di carico allo scambiatore (3) kPa 20,5 24,4 28,7 24,7 24,5 21,0 CIRCUITO FRIGORIFERO N. compressori N° 1 2 2 2 3 31,5 58,8 56,7 46,2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 3 8 56,7 46,2 2 2 1 2 2		. ,	Ki a	22,1	20,0	31,0	21,0	20,0	22,1
Perdita di carico allo scambiatore (3) kPa 20,5 24,4 28,7 24,7 24,5 21,0			1/0	6 071	7 000	0.240	10.00	12.24	12.00
CIRCUITO FRIGORIFERO N. compressori N° 1 1 1 1 1 1 1 2 N. circuiti N° 1 1 1 1 1 1 1 2 Carica refrigerante teorica kg 23,1 33,6 31,5 58,8 56,7 46,2 LIVELLI SONORI Pressione sonora totale (5) dB(A) 75 75 76 76 76 78 Potenza sonora totale in refrigerazione (6)(7) dB(A) 92 92 93 93 93 95 Potenza sonora in riscaldamento (6)(8) dB(A) 92 92 93 93 93 95 DIMENSIONI E PESI A (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 1100 H (9) mm									
N. compressori N° 1 1 1 1 1 1 1 1 1 2 N. circuiti N° 1 1 1 1 1 1 2 Carica refrigerante teorica kg 23,1 33,6 31,5 58,8 56,7 46,2 LIVELLI SONORI Pressione sonora totale (5) dB(A) 75 75 76 76 76 78 Potenza sonora totale in refrigerazione (6)(7) dB(A) 92 92 93 93 93 95 Potenza sonora in riscaldamento (6)(8) dB(A) 92 92 93 93 93 95 DIMENSIONI E PESI A (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 1100 H (9) mm 1500 15		(5)	KFa	20,5	24,4	20,1	24,1	24,5	21,0
N. circuiti N° 1 1 1 1 1 2 Carica refrigerante teorica kg 23,1 33,6 31,5 58,8 56,7 46,2 LIVELLI SONORI Pressione sonora totale (5) dB(A) 75 75 76 76 76 78 Potenza sonora totale in refrigerazione (6)(7) dB(A) 92 92 93 93 93 95 Potenza sonora in riscaldamento (6)(8) dB(A) 92 92 93 93 93 95 DIMENSIONI E PESI A (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 1100 H (9) mm 1500 1500 1500 1500 1500 1500			N 10	1	4	4	4	4	^
Carica refrigerante teorica kg 23,1 33,6 31,5 58,8 56,7 46,2 LIVELLI SONORI Pressione sonora totale (5) dB(A) 75 75 76 76 76 78 Potenza sonora totale in refrigerazione (6)(7) dB(A) 92 92 93 93 93 95 Potenza sonora in riscaldamento (6)(8) dB(A) 92 92 93 93 93 95 DIMENSIONI E PESI A (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 1100 H (9) mm 1500 1500 1500 1500 1500									
LIVELLI SONORI Pressione sonora totale (5) dB(A) 75 75 76 76 76 78 Potenza sonora totale in refrigerazione (6)(7) dB(A) 92 92 93 93 93 95 Potenza sonora in riscaldamento (6)(8) dB(A) 92 92 93 93 93 95 DIMENSIONI E PESI 8 (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 1100 H (9) mm 1500 1500 1500 1500 1500							•		
Pressione sonora totale (5) dB(A) 75 75 76 76 76 78 Potenza sonora totale in refrigerazione (6)(7) dB(A) 92 92 93 93 93 95 Potenza sonora in riscaldamento (6)(8) dB(A) 92 92 93 93 93 95 DIMENSIONI E PESI A (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 1100 H (9) mm 1500 1500 1500 1500 1500			кд	∠ა,1	33,0	31,5	ენ,ზ	50,7	40,2
Potenza sonora totale in refrigerazione (6)(7) dB(A) 92 92 93 93 93 95 Potenza sonora in riscaldamento (6)(8) dB(A) 92 92 93 93 93 95 DIMENSIONI E PESI A (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 1100 H (9) mm 1500 1500 1500 1500 1500		/=>	.=						
Potenza sonora in riscaldamento (6)(8) dB(A) 92 92 93 93 93 95 DIMENSIONI E PESI A (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 1100 H (9) mm 1500 1500 1500 1500 1500		. ,							
DIMENSIONI E PESI A (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 1100 H (9) mm 1500 1500 1500 1500 1500									
A (9) mm 2400 2600 2700 3000 3000 3000 B (9) mm 920 920 950 960 960 1100 H (9) mm 1500 1500 1500 1500 1500 1500		(6)(8)	dB(A)	92	92	93	93	93	95
B (9) mm 920 920 950 960 960 1100 H (9) mm 1500 1500 1500 1500 1500 1500									
H (9) mm 1500 1500 1500 1500 1500 1500									
· · · · · · · · · · · · · · · · · · ·									
Peso in funzionamento (9) kg 1050 1110 1280 1450 1460 1710	• •	` '							
	Peso in funzionamento	(9)	kg	1050	1110	1280	1450	1460	1710

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente
- Acqua scannibatore caro lato trenza (in/out) 40 -0/45 C, Acqua scannibatore lato sorgene (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, indoors.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 Indice di efficienza energetica stagionale
 Efficienza energetica stagionale del raffreddamento d'ambiente
 Coefficiente di prestazione stagionale
 Efficienza energetica stagionale del rafreddamento d'ambiente

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R513A [GWP₁₀₀ 631] ad effetto serra. Dati certificati in EUROVENT

0551 - 1752 124,3-400,6 kW

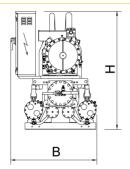
FX-W-G05/H			1302	1402	1502	1602	1752	
limentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	
RESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	285,1	311.9	345,2	366.2	400.6	
Potenza assorbita totale	(1)	kW	56,86	64,04	71,26	76,05	86,66	
EER	(1)	kW/kW	5,011	4,873	4,842	4,812	4,621	
	(1)	KVV/KVV	3,011	4,073	4,042	4,012	4,021	
REFRIGERAZIONE (EN14511 VALUE)	(1)(2)	kW	284.1	310.7	344.2	365.1	399.2	
Potenza frigorifera	. , . ,		- /	/	- ,	,	/	
EER	(1)(2)	kW/kW	4,840	4,690	4,690	4,660	4,480	
Classe EUROVENT			-	-	-	-	-	
RISCALDAMENTO (GROSS VALUE)	(4)							
Potenza termica totale	(3)	kW	327,0	357,6	393,8	418,6	460,2	
Potenza assorbita totale	(3)	kW	74,35	82,35	90,39	96,36	109,7	
OP		kW/kW	4,395	4,340	4,356	4,342	4,195	
RISCALDAMENTO (EN14511 VALUE)								
Potenza termica totale	(3)(2)	kW	327,8	358,5	394,9	419,6	461,1	
COP	(3)(2)	kW/kW	4,200	4,130	4,190	4,170	4,040	
Classe EUROVENT								
EFFICIENZA ENERGETICA								
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Rea. UF	2016/2281)					
Refrigerazione d'ambiente		,. tog. or						
Prated.c	(10)	kW	_	311	344	365	399	
SEER	(10)(11)	KVV		5.58		5.61		
		%	<u>-</u>		5,61	5,61	5,57	
Rendimento ns	(10)(12)			220	221	LLL	220	
EFFICIENZA STAGIONALE IN RISCALDA								
PDesign	(4)	kW	384	-	-	-	-	
SCOP	(4)(13)	•	5,62	-	-	-	-	
Rendimento ns	(4)(14)	%	217	-	-	-	-	
Classe di efficienza stagionale	(4)		-	-	-	-	-	
SCAMBIATORI								
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE							
Portata	(1)	l/s	13,63	14,91	16,51	17,51	19,16	
Perdita di carico allo scambiatore	(1)	kPa	38,5	46,1	32,0	36,0	43,0	
SCAMBIATORE UTENZA IN RISCALDAN	IENTO							
Portata	(3)	l/s	20,49	22,22	24,61	26,14	26,94	
Perdita di carico allo scambiatore	(3)	kPa	87,1	102	71.0	80,1	85,1	
SCAMBIATORE SORGENTE IN REFRIGE	. ,		0.,1	. 32	,0		JU, 1	
Portata	(1)	l/s	16,29	17,90	19.83	21,06	23.19	
Perdita di carico allo scambiatore	(1)	kPa	26.6	29,3	33,0	28,9	24,8	
	. ,	кга	20,0	23,0	33,0	20,9	24,0	
SCAMBIATORE SORGENTE IN RISCALE		1/-	15.70	47.00	40.04	20.04	00.04	
Portata	(3)	l/s	15,79	17,26	19,01	20,21	22,21	
Perdita di carico allo scambiatore	(3)	kPa	25,0	27,2	30,3	26,6	22,8	
CIRCUITO FRIGORIFERO								
l. compressori		N°	2	2	2	2	2	
N. circuiti		N°	2	2	2	2	2	
Carica refrigerante teorica		kg	67,2	65,1	63,0	90,3	116	
IVELLI SONORI								
Pressione sonora totale	(5)	dB(A)	77	78	78	78	78	
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	95	96	96	96	96	
Potenza sonora in riscaldamento	(6)(8)	dB(A)	95	96	96	96	96	
DIMENSIONI E PESI		` '						
NINEROIGHT E I EGI	(9)	mm	3100	3100	3200	3200	3200	
3	(9)	mm	1100	1100	1100	1200	1200	
, 1	(9)	mm	1500	1500	1600	1600	1600	
Peso in funzionamento	(9)	kg	1820	1990	2280	2430	2590	
					//011	74.30		

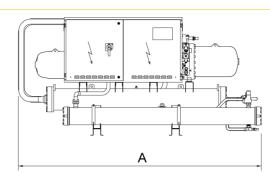
Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente
- Acqua scannibatore caro lato trenza (in/out) 40 -0/45 C, Acqua scannibatore lato sorgene (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, indoors.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 REGOLAMENTO (UE) N. 2016/2281


Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R513A [GWP₁₀₀ 631] ad effetto serra.



i-FX-W (1+i)-G05/H

532,3-1784 kW

Pompa di calore ad alta efficienza con sorgente acqua, reversibile lato idraulico

Unità monocircuito da interno per la produzione di acqua refrigerata/riscaldata con compressori a vite ottimizzati per lavorare con bassi rapporti di compressione azionati da motori a velocità fissa e velocità variabile (Inverter Driven), con utilizzo di refrigerante R513A, valvola di espansione elettronica, condensatore a fascio tubiero ed evaporatore allagato a fascio tubiero ad alti coefficienti di scambio termico, entrambi di progettazione e produzione Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A.. Unità caratterizzata da estrema compattezza, grazie al particolare layout costruttivo, senza basamento, struttura e pannellatura.

Comando

Controllore elettronico W3000+

W3000+ presenta una tastiera Large con comandi funzionali e display LCD che permette la consultazione e l'intervento sull'unità per mezzo di un menu multi-livello. termoregolazione si caratterizza per la modulazione continua della capacità, basata su algoritmi PID e riferita alla temperatura di mandata dell'acqua. La diagnostica comprende la gestione degli allarmi, con funzioni "black box" (tramite PC) e storico allarmi (tramite display o anche PC) per una migliore analisi del comportamento dell'unità. L'orologio integrato permette la creazione di un profilo fino a 4 giorni tipo e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia richiesta. Per sistemi a più unità è possibile la regolazione delle risorse tramite dispositivi proprietari opzionali. Inoltre, può essere attuata la contabilizzazione dei consumi e delle prestazioni. Il controllo a portata idraulica variabile è previsto di standard (funzione VPF.E). La supervisione è realizzabile con dispositivi proprietari o in integrazione in sistemi di terze parti per mezzo dei protocolli ModBus, Bacnet, Bacnet-over-IP, Echelon LonWorks. . Una dedicata tastiera per installazione a muro consente infine di assicurare il controllo remoto di tutte le funzioni.

Refrigerante

Versioni

Unità ad alta efficienza

Configurazioni

Funzione pompa di calore con reversibilità lato idraulico

Caratteristiche

ELEVATA EFFICIENZA

Altissima efficienza sia a pieno carico che ai carichi parziali e uso di logiche proprietarie. I consumi energetici sono ridotti, grazie anche all'uso della tecnologia inverter, garantendo minori costi di esercizio e quindi un rapido ritorno dell'investimento.

FLESSIBILITA'

Unità caratterizzata da notevole flessibilità di applicazione grazie all'uso della tecnologia inverter, che consente di ottenere, in funzione della capacità frigorifera richiesta, il risultato ottimale in termini costo/prestazioni e massima efficienza.

COMPLETA VERSATILITA'

Unità progettata riunendo in un unico circuito un compressore a velocità fissa ed uno abbinato ad inverter, in modo da garantire la migliore risposta alle necessità impiantistiche sia a pieno carico che ai carichi parziali.

MASSIMA COMPATTEZZA

Massima compattezza che consente flessibilità di progettazione e installazione anche in presenza di spazi ridotti oppure in caso di sostituzione di unità in sede di riqualificazione di impianti preesistenti.

- Tastiera interfaccia Touch Screen
- Sistema VPF (Variable Primary Flow)
- Predisposizione connettività remota con schede protocollo ModBus/Echelon/Bacnet
- Dispositivi vari per il controllo della condensazione

i-FX-W (1+i)-G05			1402	1752	1902	2152	2602
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
RESTAZIONI		·					
REFRIGERAZIONE (GROSS VALUE)							
Potenza frigorifera	(1)	kW	532,3	665.0	721.0	819.3	998.7
Potenza assorbita totale	(1)	kW	102.0	124.6	135.4	154.6	189.4
ER	(1)	kW/kW	5,219	5,337	5,325	5,299	5,273
REFRIGERAZIONE (EN14511 VALUE)	. ,		-,	-,	-,	-,	-,
otenza frigorifera	(1)(2)	kW	487.6	609.4	660.7	751.5	916.2
ER	(1)(2)	kW/kW	5,180	5,290	5,280	5,280	5,290
Classe EUROVENT	(· /(=/	1000/1000	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)							
Potenza termica totale	(3)	kW	592.6	731.1	801.5	910.9	1098
Potenza assorbita totale	(3)	kW	128.9	157,3	171.5	195.9	236.4
COP	(0)	kW/kW	4,597	4,648	4,673	4,650	4.645
RISCALDAMENTO (EN14511 VALUE)		KVV/KVV	4,001	4,040	4,073	4,000	4,043
otenza termica totale	(3)(2)	kW	543.5	670.7	734.9	835,4	1006
COP	. , . ,		,-	,	- ,-		
lasse EUROVENT	(3)(2)	kW/kW	4,510	4,570	4,580	4,590	4,610
FFICIENZA ENERGETICA		/ <u></u>					
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE 2	(016/2281)				
efrigerazione d'ambiente							
rated,c	(10)	kW	488	609	661	752	916
EER	(10)(11)		7,98	7,93	7,89	8,01	8,11
Rendimento ηs	(10)(12)	%	316	314	313	317	321
FFICIENZA STAGIONALE IN RISCALDA	AMENTO (F	Reg. UE 81:	3/2013)				
Design	(4)	kW	-	-	-	-	-
COP	(4)(13)		-	-	-	-	-
endimento ηs	(4)(14)	%	-	-	-	-	-
lasse di efficienza stagionale	(4)		-	-	-	-	-
CAMBIATORI							
CAMBIATORE UTENZA IN REFRIGERA	ZIONE						
ortata	(1)	l/s	23,34	29,16	31,62	35,96	43,84
erdita di carico allo scambiatore	(1)	kPa	27,0	34,7	31,5	31,2	30,9
CAMBIATORE UTENZA IN RISCALDAN	/ENTO						
ortata	(3)	l/s	34.17	38.89	44.44	50.00	59.72
Perdita di carico allo scambiatore	(3)	kPa	57.8	61.7	62.2	60.3	57.3
CAMBIATORE SORGENTE IN REFRIGE	. ,		2.,0		,-		0.,0
ortata	(1)	l/s	27.61	34,38	37.29	42.42	51.72
erdita di carico allo scambiatore	(1)	kPa	37.8	35.8	39.6	39.2	36.7
CAMBIATORE SORGENTE IN RISCALI	. ,	ili u	01,0	00,0	00,0	00,2	00,1
ortata	(3)	l/s	26,21	32,35	35.45	40.30	48,55
erdita di carico allo scambiatore	(3)	kPa	34,1	32,35	35,45	35,4	32,4
IRCUITO FRIGORIFERO	(0)	кга	U -1 , I	51,1	55,0	55,4	32,4
		N°	2	2	2	2	2
. compressori							
. circuiti		N°	130	1 176	1 181	1 195	1 284
arica refrigerante teorica		kg	130	1/0	101	190	204
IVELLI SONORI	(=)	.=					
ressione sonora totale	(5)	dB(A)	82	82	81	83	83
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	100	100	100	102	102
otenza sonora in riscaldamento	(6)(8)	dB(A)	100	100	100	102	102
IMENSIONI E PESI							
	(9)	mm	2950	3310	3310	3310	4475
}	(9)	mm	1320	1425	1445	1480	1410
A 3 1		mm mm	1320 1805	1425 1935	1445 2000	1480 2150	1410 2250

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente
- Acqua scanninatore tato sorgene (in/out) 40 C/45 C, Acqua scanninatore tato sorgene (in/out) 10°C/6,7°C

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, indoors.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 Indice di efficienza energetica stagionale
 Efficienza energetica stagionale del raffreddamento d'ambiente
 Coefficiente di prestazione stagionale
 Efficienza energetica stagionale del rafreddamento d'ambiente

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R513A [GWP₁₀₀ 631] ad effetto serra. Dati certificati in EUROVENT

Pompa di calore ad alta efficienza con sorgente acqua, reversibile lato idraulico

i-FX-W (1+i)-G05			3002	3402	3852	4252	4652
imentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
RESTAZIONI							
EFRIGERAZIONE (GROSS VALUE)							
otenza frigorifera	(1)	kW	1143	1296	1472	1607	1784
otenza assorbita totale	(1)	kW	216,0	243,1	275,6	303,9	343.4
ER	(1)	kW/kW	5.292	5,331	5,341	5,288	5,195
EFRIGERAZIONE (EN14511 VALUE)	(.,	KVV/KVV	0,202	0,001	0,041	0,200	0,100
otenza frigorifera	(1)(2)	kW	1048	1189	1351	1485	1636
ER	(1)(2)	kW/kW	5,320	5,370	5,410	5,330	5,270
lasse EUROVENT	(1)(2)	KVV/KVV	-	5,370	5,410	-	5,270
					-	-	
RISCALDAMENTO (GROSS VALUE)	(2)	1-14/	4055	4.445	4040	4770	4040
otenza termica totale	(3)	kW	1255	1445	1640	1772	1948
otenza assorbita totale	(3)	kW	269,8	303,8	344,3	377,4	424,2
OP		kW/kW	4,652	4,756	4,763	4,695	4,592
ISCALDAMENTO (EN14511 VALUE)	(0)(0)		1150	1001	4.400	1000	176:
otenza termica totale	(3)(2)	kW	1150	1321	1499	1633	1781
OP ELIBONENIE	(3)(2)	kW/kW	4,630	4,700	4,730	4,670	4,610
lasse EUROVENT							
FFICIENZA ENERGETICA							
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE 2	016/2281)				
efrigerazione d'ambiente							
rated,c	(10)	kW	1048	1189	1351	1485	1636
EER	(10)(11)		8.09	7.95	8.02	7.85	7.81
endimento ns	(10)(12)	%	321	315	318	311	310
FFICIENZA STAGIONALE IN RISCALDA	. ,, ,		3/2013)				
Design	(4)	kW		_	_	_	_
COP	(4)(13)	11.7.7		-			
endimento ns	(4)(14)	%		-	<u> </u>	<u>-</u>	
lasse di efficienza stagionale	(4)	,,	-	-	-	-	
CAMBIATORI	(.,						
CAMBIATORE UTENZA IN REFRIGERA	ZIONE						
		1/-	E0.4E	FC 00	04.00	74.00	70.00
ortata	(1)	l/s	50,15	56,88	64,63	71,06	78,30
erdita di carico allo scambiatore	(1)	kPa	33,6	31,9	30,9	34,7	45,3
CAMBIATORE UTENZA IN RISCALDAN			00.55	0.4.==	00	07.55	
ortata	(3)	I/s	68,06	84,97	96,56	97,22	97,22
erdita di carico allo scambiatore	(3)	kPa	61,8	71,1	68,9	64,9	69,8
CAMBIATORE SORGENTE IN REFRIGE							
ortata	(1)	l/s	59,11	66,96	76,02	83,76	92,41
erdita di carico allo scambiatore	(1)	kPa	30,3	33,7	30,0	30,9	29,9
CAMBIATORE SORGENTE IN RISCALI	DAMENTO						
ortata	(3)	l/s	55,47	63,73	72,34	78,81	85,93
erdita di carico allo scambiatore	(3)	kPa	26,7	30,5	27,1	27,4	25,8
IRCUITO FRIGORIFERO							
. compressori		N°	2	2	2	2	2
. circuiti		N°	1	<u></u>	1	<u>-</u> 1	1
arica refrigerante teorica		kg	325	347	356	372	372
VELLI SONORI		۳۰۰	323	· · · · · · · · · · · · · · · · · · ·		Ŭ. <u> </u>	J. 2
ressione sonora totale	(5)	dB(A)	83	82	82	84	84
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	102	102	102	104	104
otenza sonora in riscaldamento	(6)(8)	dB(A)	102	102	102	104	104
MENSIONI E PESI	(3)(0)	UD(A)	102	102	102	1 U '1	104
WENSIUM E PESI			4.475	4570	4650	4650	4850
	(9)	mm	4475				
	(9)	mm	1405	1435	1495	1495	1495
3 3 1 Peso in funzionamento							

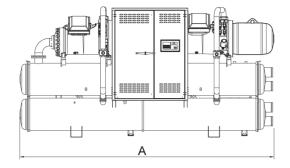
Note

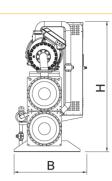
- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente Acqua scannibatore cato ato trenza (in/out) 40 c/45 C, Acqua scannibatore lato sorgene (in/out) 10°C/6,7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.

- 6 Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 7 Potenza sonora in refrigerazione, indoors.
 8 Potenza sonora in riscaldamento, indoors.
 9 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 10 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 11 Indice di efficienza energetica stagionale
 12 Efficienza energetica stagionale del raffreddamento d'ambiente
 13 Coefficiente di prestazione stagionale
 14 Efficienza energetica stagionale del riscaldamento d'ambiente


Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R513A [GWP₁₀₀ 631] ad effetto serra. Dati certificati in EUROVENT



i-FX2-W-G04/H

0402 - 1242 397.8-1242 kW

Pompa di calore ad alta efficienza con sorgente acqua, reversibile lato idraulico

Unità per installazione interna per la produzione di acqua refrigerata/riscaldata con compressori a vite ottimizzati per lavorare con bassi rapporti di compressione, azionati da motori ad alta efficienza a velocità variabile (Inverter Driven), con utilizzo di refrigerante a bassissimo GWP HFO R1234ze. Tutte le taglie sono realizzate con due circuiti frigoriferi completamente indipendenti, valvole di espansione a controllo elettronico, condensatore a fascio tubiero ed evaporatore di tipo ibrido allagato/falling film con tecnologia a bassa carica di refrigerante ed alti coefficienti di scambio termico, entrambi di progettazione e produzione Mitsubishi Electric Hydronics and IT Cooling Systems. Queste particolari soluzioni tecnologiche permettono all'unità di raggiungere elevate efficienze, con una bassa carica di refrigerante.

Comando

Controllore elettronico W3000+

W3000+ si caratterizza per le evolute logiche proprietarie e l'innovativa interfaccia utente KIPlink (Keyboard In your Pocket). Basata su tecnologia WiFi, KIPlink permette di operare sull'unità direttamente da smartphone e tablet.

Funzionalità: accendere e spegnere l'unità, modificare il set point, graficare le principali grandezze di funzionamento, monitorare lo stato dei circuiti frigoriferi e dei vari componenti, visualizzare gli allarmi presenti. La modulazione continua della capacità si basa su regolazione sequenziale + PID riferita alla temperatura di mandata dell'acqua. E' possibile gestire lo storico allarmi, con funzioni "black box" (tramite PC). L'orologio integrato permette la creazione di un profilo fino a 4 giorni e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia richiesta. Per sistemi a più unità è possibile regolare le risorse tramite dispositivi proprietari opzionali. Inoltre, può essere attuata la contabilizzazione dei consumi e delle prestazioni, mentre la supervisione è realizzabile con dispositivi proprietari o in integrazione in sistemi di terze parti mediante protocolli ModBus, Bacnet, Bacnet-over-IP, Konnex, SNMP. Una dedicata tastiera per installazione a muro (opzione) consente infine di assicurare il controllo remoto di tutte le funzioni. Il controllo a portata idraulica variabile è previsto di standard (funzione VPF.E).

Refrigerante

Caratteristiche

REFRIGERANTE HFO

Refrigerante di 4° generazione HFO 1234ze, caratterizzato da effetto serra trascurabile rispetto ai tradizionali refrigeranti HFC (Global Warming Potential GWP di HFO 1234ze < 1, GWP di R134a = 1300 secondo IPCC 5a revisione) e ad impatto zero sullo strato di ozono.

SCAMBIATORE IBRIDO ALLAGATO/FALLING FILM

L'evaporatore di tipo ibrido allagato/falling film, di progettazione e produzione Mitsubishi Electric Hydronics and IT Cooling Systems, consente di avere una bassa carica di refrigerante ed alti coefficienti di scambio termico.

2 CIRCUITI FRIGO COMPLETAMENTE INDIPENDENTI

2 circuiti frigo completamente indipendenti ciascuno equipaggiato con un compressore a vite inverter per garantire un perfetto bilanciamento della potenza frigorifera generata

ESTESO CAMPO DI FUNZIONAMENTO

Compressori a velocità variabile e kit HWT dedicato permettono all'unità di raggiungere alte temperature al condensatore. L'unità standard può produrre acqua fino a 52°C, mentre con l'impiego del kit HWT è possibile arrivare fino a 72°C di acqua prodotta al condensatore.

SILENZIOSITA²

Silenziosità dell'unità garantita dall'attenta progettazione. La cofanatura integrale, laddove richiesta, abbassa ulteriormente il livello sonoro oltre i migliori livelli di mercato.

ELEVATISSIMA EFFICIENZA AI CARICHI PARZIALI

Efficienza energetica ai carichi parziali ai migliori livelli di mercato grazie a soluzioni tecnologiche di ultima generazione: compressori a vite equipaggiati con inverter, evaporatore ibrido allagato/falling film e logiche di controllo avanzate

PORTATA VARIABILE

Regolazione avanzata delle pompe inverter a seconda del carico richiesto che consente di ridurre i consumi elettrici e garantire il funzionamento dell'unità anche in condizioni critiche.


- Cofanatura compressori
- Cofanatura acustica integrale "plus"
- Kit HWT, High Water Temperature
- Demand Limit ottimizzato
- Funzione controllo refrigerante
- Quadro elettrico removibile
- Evaporatore e/o condensatore con 16 BAR di pressione lato acqua
- Connessioni idrauliche su lato opposto al condensatore e/o all'evaporatore
- Condensatore 4 passi

i-FX2-W-G04 /H			0402	0452	0502	0572	0632	0702
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	397,8	450.0	504.0	566,0	626,0	702,0
Potenza assorbita totale	(1)	kW	78.13	87.90	97.27	111.0	125.7	145.2
EER	(1)	kW/kW	5,093	5,119	5,180	5,099	4,980	4,835
REFRIGERAZIONE (EN14511 VALUE)	(')	KVV/KVV	3,033	5,115	3,100	3,033	4,300	4,000
Potenza frigorifera	(1)(2)	kW	397,5	449.6	503.6	565.6	625.5	701.5
EER	(1)(2)	kW/kW	4,940	4,950	5,030	4,950	4,840	4,700
Classe EUROVENT	(1)(2)	KVV/KVV	4,940	4,950	-	4,950	4,040	4,700
			-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)	(2)	1-10/	450.4	E40 E	F74 O	040.0	740.0	040.0
Potenza termica totale	(3)	kW	453,1	512,5	574,0	646,6	718,3	812,0
Potenza assorbita totale	(3)	kW	104,0	116,7	128,9	146,2	164,4	187,8
COP		kW/kW	4,357	4,392	4,453	4,423	4,369	4,324
RISCALDAMENTO (EN14511 VALUE)	(0) (0)							
Potenza termica totale	(3)(2)	kW	453,5	513,0	574,4	647,1	718,8	812,5
COP	(3)(2)	kW/kW	4,200	4,220	4,290	4,260	4,210	4,160
Classe EUROVENT								
EFFICIENZA ENERGETICA								
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)					
Refrigerazione d'ambiente			,					
Prated,c	(10)	kW	398	450	504	566	626	702
BEER	(10)(11)		8.02	8.07	8.11	8.17	8.20	8.26
Rendimento ηs	(10)(12)	%	318	320	321	324	325	328
EFFICIENZA STAGIONALE IN RISCALDA								
PDesign	(4)	kW	-	_	_	_	_	_
SCOP	(4)(13)							
Rendimento ns	(4)(14)	%	-		-	-	-	
Classe di efficienza stagionale	(4)	,,,						
SCAMBIATORI	(· /							
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE							
		1/-	40.00	04.50	04.40	07.07	00.04	22.57
Portata Perdita di carico allo scambiatore	(1)	l/s kPa	19,03 30.0	21,52	24,10 30.5	27,07 31.1	29,94 31.5	33,57
	. ,	кРа	30,0	30,1	30,5	31,1	31,3	34,8
SCAMBIATORE UTENZA IN RISCALDAN		.,	00.04	00.40	00.00	40.00	40.00	=0.04
Portata	(3)	I/s	28,31	32,10	36,08	40,00	43,89	50,64
Perdita di carico allo scambiatore	(3)	kPa	66,4	66,9	68,3	67,8	67,6	79,1
SCAMBIATORE SORGENTE IN REFRIGE								
Portata	(1)	l/s	22,67	25,62	28,65	32,25	35,80	40,34
Perdita di carico allo scambiatore	(1)	kPa	30,5	38,9	29,7	32,6	36,0	31,6
SCAMBIATORE SORGENTE IN RISCALD	AMENTO							
Portata	(3)	l/s	21,87	24,74	27,71	31,21	34,67	39,19
Perdita di carico allo scambiatore	(3)	kPa	28,3	36,2	27,8	30,6	33,8	29,9
CIRCUITO FRIGORIFERO								
N. compressori		N°	2	2	2	2	2	2
N. circuiti		N°	2	2	2	2	2	2
Carica refrigerante teorica		kg	118	118	142	142	156	223
IVELLI SONORI		9						
Pressione sonora totale	(5)	dB(A)	81	83	83	83	84	84
Potenza sonora totale in refrigerazione	(6)(7)	dB(A)	100	102	102	102	103	104
Potenza sonora totale in reingerazione Potenza sonora in riscaldamento	(6)(8)		100	102	102	102	103	104
	(0)(0)	dB(A)	100	102	102	102	103	104
DIMENSIONI E PESI	(0)		05.40	0540	05.40	0500	0500	176.5
A	(9)	mm	3540	3540	3540	3580	3580	4730
3	(9)	mm	1520	1520	1520	1630	1630	1630
Н	(9) (9)	mm	2140 4750	2140	2140 5030	2140 5090	2140 5260	2140 6280
Peso in funzionamento		kg		4810				

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente
- Acqua scannibatore caro lato trenza (in/out) 40 -0/45 C, Acqua scannibatore lato sorgene (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, indoors.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 Indice di efficienza energetica stagionale
 Efficienza energetica stagionale del raffreddamento d'ambiente
 Goefficiente di prestazione stagionale
 Efficienza energetica stagionale del riscaldamento d'ambiente

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R1234ze [GWP₁₀₀ 7] ad effetto serra. Dati certificati in EUROVENT

Pompa di calore ad alta efficienza con sorgente acqua, reversibile lato idraulico

0402 - 1242 397,8-1242 kW

i-FX2-W-G04 /H			0762	0852	0942	1042	1122	1242
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI								
REFRIGERAZIONE (GROSS VALUE)								
Potenza frigorifera	(1)	kW	762,0	850.0	938.0	1040	1118	1242
Potenza assorbita totale	(1)	kW	167.7	160.8	177.6	200.2	221.4	253.8
EER	(1)	kW/kW	4,544	5,286	5,282	5,195	5,050	4,894
REFRIGERAZIONE (EN14511 VALUE)	(1)	KVV/KVV	4,544	3,200	3,202	3,193	3,030	4,034
Potenza frigorifera	(1)(2)	kW	761.4	849.4	937.4	1039	1117	1241
EER			- /	,	/			
Classe EUROVENT	(1)(2)	kW/kW	4,420	5,130	5,130	5,050	4,900	4,770
			-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)	(0)		004 =	0544	4055	4404	4077	4 400
Potenza termica totale	(3)	kW	891,5	954,1	1055	1184	1277	1428
Potenza assorbita totale	(3)	kW	213,8	207,1	229,1	259,0	282,4	323,2
OP		kW/kW	4,170	4,607	4,605	4,571	4,522	4,418
RISCALDAMENTO (EN14511 VALUE)								
Potenza termica totale	(3)(2)	kW	892,1	954,6	1056	1185	1278	1429
COP	(3)(2)	kW/kW	4,010	4,430	4,430	4,400	4,340	4,260
Classe EUROVENT								
FFICIENZA ENERGETICA								
FFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Reg. UE	2016/2281)					
Refrigerazione d'ambiente		· -	,					
Prated.c	(10)	kW	761	849	937	1039	1117	1241
SEER	(10)(11)		8.25	8.51	8.58	8,56	8.64	8.65
Rendimento ns	(10)(12)	%	327	337	340	340	343	343
FFICIENZA STAGIONALE IN RISCALDA					0.0	0.0	0.10	0.0
PDesign	(4)	kW	-	_	_	_	_	_
6COP	(4)(13)	17.4.4						
Rendimento ns	(4)(14)	%	-				-	
Classe di efficienza stagionale	(4)	70						
CAMBIATORI	(4)							
CAMBIATORE UTENZA IN REFRIGERA	ZIONE							
		.,	00.44	40.05	44.00	40.74	50.47	FO 40
Portata	(1)	l/s	36,44	40,65	44,86	49,74	53,47	59,40
Perdita di carico allo scambiatore	. ,	kPa	35,3	34,3	34,2	35,3	35,6	35,7
CAMBIATORE UTENZA IN RISCALDAN			==	20 - :				
Portata	(3)	I/s	55,00	60,51	66,94	74,97	80,55	89,17
Perdita di carico allo scambiatore	(3)	kPa	80,4	75,9	76,1	80,1	80,7	80,4
SCAMBIATORE SORGENTE IN REFRIGE	RAZIONE							
Portata	(1)	l/s	44,24	48,17	53,16	59,09	63,80	71,23
Perdita di carico allo scambiatore	(1)	kPa	38,1	34,3	32,6	32,6	38,0	32,2
CAMBIATORE SORGENTE IN RISCALD	AMENTO							
Portata	(3)	l/s	43,03	46,05	50,94	57,17	61,66	68,92
Perdita di carico allo scambiatore	(3)	kPa	36,0	31,3	29,9	30,5	35,5	30,2
IRCUITO FRIGORIFERO			,	,	,	,	,-	,-
I. compressori		N°	2	2	2	2	2	2
I. circuiti		N°	2	2	2	2	2	2
Carica refrigerante teorica		kg	234	246	258	271	285	299
IVELLI SONORI		ng	204	270	200	Z/ I	200	255
Pressione sonora totale	(5)	dB(A)	84	79	82	82	83	83
	(6)(7)		104		102	102	103	103
otenza sonora totale in refrigerazione		dB(A)		99				
otenza sonora in riscaldamento	(6)(8)	dB(A)	104	99	102	102	103	103
IMENSIONI E PESI	(2)							
	(9)	mm	4730	4730	4730	4730	4730	4800
3	(9)	mm	1630	1710	1710	1710	1710	1810
1	(9)	mm	2140	2200	2200	2200	2200	2450
Peso in funzionamento	(9)	kg	6590	7590	7890	8300	8650	9400

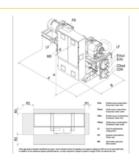
Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente
- Acqua scannibatore caro lato trenza (in/out) 40 -0/45 C, Acqua scannibatore lato sorgene (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, indoors.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 REGOLAMENTO (UE) N. 2016/2281


Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R1234ze [GWP $_{100}$ 7] ad effetto serra.


i-FX2-W-G04 /H + UP kit			0402	0452	0502	0572	0632	0702	0762
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/5
PRESTAZIONI									
REFRIGERAZIONE (GROSS VALUE)									
Potenza frigorifera	(1)	kW	397,8	450,0	504,0	566,0	626,0	702,0	762,0
Potenza assorbita totale	(1)	kW	75,83	85,32	94,41	107,7	122,0	140,9	162,7
EER	(1)	kW/kW	5,248	5,275	5,339	5,255	5,131	4,982	4,683
REFRIGERAZIONE (EN14511 VALUE)	. ,		-,	-,	-,	-,	-,	-,	.,
Potenza frigorifera	(1)(2)	kW	397,5	449,6	503.6	565,6	625,5	701,5	761,4
EER	(1)(2)	kW/kW	5,090	5,100	5,180	5,100	4,980	4,840	4,550
Classe EUROVENT	(·)(-)	IXVV/IXVV	-	-	-	-	-,500	-,0-0	-,000
RISCALDAMENTO (GROSS VALUE)									
Potenza termica totale	(3)	kW	450.2	509.3	570.4	642.6	713.7	806.8	885.6
Potenza assorbita totale	(3)	kW	101,0	113,3	125,1	141.9	159,5	182,2	207,5
COP	(5)	kW/kW	4,457	4,495	4,560	4,529	4,475	4,428	4,268
		KVV/KVV	4,437	4,495	4,300	4,529	4,473	4,420	4,200
RISCALDAMENTO (EN14511 VALUE)	(2)(2)	LAAA	150.6	E00.7	E70 0	642.0	7110	007.2	000.0
Potenza termica totale	(3)(2)	kW	450,6	509,7	570,8	643,0	714,2	807,3	886,2
COP	(3)(2)	kW/kW	4,290	4,320	4,390	4,360	4,310	4,260	4,100
Classe EUROVENT									
EFFICIENZA ENERGETICA									
FFICIENZA STAGIONALE IN RAFFREDI	DAMENTO	(Reg. UE	2016/2281)						
Refrigerazione d'ambiente									
Prated,c	(10)	kW	398	450	504	566	626	702	761
SEER	(10)(11)		8,19	8,32	8,49	8,55	8,58	8,68	8,64
Rendimento ηs	(10)(12)	%	325	330	336	339	340	344	343
FFICIENZA STAGIONALE IN RISCALDA	MENTO (Rea. UE 8	13/2013)						
PDesign	(4)	kW	-	-	-	-	-	-	-
SCOP	(4)(13)		-	-	-	-	-	-	-
Rendimento ns	(4)(14)	%	-	-	-	-	-	-	-
Classe di efficienza stagionale	(4)		-	-	-	-	-	-	-
CAMBIATORI	, ,								
SCAMBIATORE UTENZA IN REFRIGERA	ZIONE								
Portata	(1)	l/s	19.03	21,52	24,10	27,07	29.94	33,57	36,44
Perdita di carico allo scambiatore	(1)	kPa	30.0	30.1	30.5	31.1	31.5	34.8	35.3
SCAMBIATORE UTENZA IN RISCALDAM	()	KI A	30,0	50,1	30,3	31,1	31,3	34,0	55,5
		l/s	28.31	32.10	36.08	40.00	43.89	50.64	55.00
Portata	(3)		- , -	- , -	,	-,	- ,	,-	,
Perdita di carico allo scambiatore	(3)	kPa	66,4	66,9	68,3	67,8	67,6	79,1	80,4
SCAMBIATORE SORGENTE IN REFRIGE			00.55	05.54	00.50	00.44	05.00	10.15	
Portata	(1)	I/s	22,57	25,51	28,52	32,11	35,63	40,15	44,02
Perdita di carico allo scambiatore	(1)	kPa	30,2	38,5	29,4	32,3	35,7	31,3	37,7
SCAMBIATORE SORGENTE IN RISCALD									
Portata	(3)	l/s	21,73	24,58	27,53	31,02	34,45	38,94	42,75
Perdita di carico allo scambiatore	(3)	kPa	28,0	35,8	27,4	30,2	33,4	29,5	35,5
CIRCUITO FRIGORIFERO									
I. compressori		N°	2	2	2	2	2	2	2
I. circuiti		N°	2	2	2	2	2	2	2
Carica refrigerante teorica		kg	118	118	142	142	156	223	234
IVELLI SÖNORI									
Pressione sonora totale	(5)	dB(A)	81	83	83	83	84	84	84
otenza sonora totale in refrigerazione	(6)(7)	dB(A)	100	102	102	102	103	104	104
Potenza sonora in riscaldamento	(6)(8)	dB(A)	100	102	102	102	103	104	104
DIMENSIONI E PESI	(5)(5)	GD(/1)	100	102	102	102	100	107	104
	(0)		2510	2510	3510				
1	(9)	mm	3540	3540	3540	3580	3580	4730	
A 3	(9)	mm	1520	1520	1520	1630	1630	1630	1630
A B H Peso in funzionamento									4730 1630 2140 6590

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente 4
- Acqua scambiatore cardo lato trenza (in/out) 40 C/45 C, Acqua scambiatore lato sorgene (in/out) 10°C/7°C
 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]
 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora. 5
- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, indoors.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 REGOLAMENTO (UE) N. 2016/2281

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R1234ze [GWP₁₀₀ 7] ad effetto serra. Dati certificati in EUROVENT

Pompa di calore ad alta efficienza con sorgente acqua, reversibile lato idraulico

0251 - 2064 254.7-2069 kW

Unità da interno per la produzione di acqua refrigerata/riscaldata con compressori centrifughi oil-free, utilizzo di R1234ze, condensatore a fascio tubiero, evaporatore allagato a fascio tubiero e valvola di regolazione elettronica.

Basamento, struttura e pannellatura in lamiera di acciaio zincata verniciata con polveri poliesteri.

Macchina flessibile ed affidabile che si adegua alle più diverse condizioni di carico grazie all'accurata termoregolazione combinata all'impiego di un compressore a variazione continua della velocità. Il compressore è altamente innovativo: cuscinetti a levitazione magnetica e controllo digitale della velocità delle giranti consentono di raggiungere valori di efficienza ai carichi parziali mai raggiunti fino ad oggi.

Comando

Controllore elettronico W3000+

W3000+ si caratterizza per le evolute logiche proprietarie e l'innovativa interfaccia utente KIPlink (Keyboard In your Pocket). Basata su tecnologia WiFi, KIPlink permette di operare sull'unità direttamente da smartphone e tablet.

Funzionalità: accendere e spegnere l'unità, modificare il set point, graficare le principali grandezze di funzionamento, monitorare lo stato dei circuiti frigoriferi e dei vari componenti, visualizzare gli allarmi presenti. La modulazione continua della capacità si basa su regolazione sequenziale + PID riferita alla temperatura di mandata dell'acqua. E' possibile gestire lo storico allarmi, con funzioni "black box" (tramite PC). L'orologio integrato permette la creazione di un profilo fino a 4 giorni e 10 fasce orarie, indispensabile per una programmazione efficiente della produzione dell'energia richiesta. Per sistemi a più unità è possibile regolare le risorse tramite dispositivi proprietari opzionali. Inoltre, può essere attuata la contabilizzazione dei consumi e delle prestazioni, mentre la supervisione è realizzabile con dispositivi proprietari o in integrazione in sistemi di terze parti mediante protocolli ModBus, Bacnet, Bacnet-over-IP, Konnex, SNMP. Una dedicata tastiera per installazione a muro (opzione) consente infine di assicurare il controllo remoto di tutte le funzioni. Il controllo a portata idraulica variabile è previsto di standard (funzione VPF.E).

Refrigerante

Configurazioni

H Funzione pompa di calore con reversibilità lato idraulico

Caratteristiche

REFRIGERANTE HFO

Refrigerante di 4° generazione HFO 1234ze, caratterizzato da effetto serra trascurabile rispetto ai tradizionali refrigeranti HFC (Global Warming Potential GWP di HFO 1234ze < 1, GWP di R134a = 1300 secondo IPCC 5a revisione) e ad impatto zero sullo strato di ozono.

ELEVATISSIMA EFFICIENZA

Elevatissima efficienza a carico pieno e parziale, ai migliori livelli nel mercato, grazie alle soluzioni tecnologiche adottate: modulazione di capacità estesa e scambiatore allagato; ciò offre i minimi costi di esercizio nelle reali condizioni di lavoro dell'unità.

COMPOSIZIONE FLESSIBILE

Attacchi acqua di evaporatore e condensatore che possono essere distribuiti sul lato destro o sinistro, per adattarsi a qualunque esigenza impiantistica

ADATTABILITA'

Adattabilità alle esigenze dell'impianto grazie alla modulazione continua della capacità termica, garantita da sofisticate logiche di regolazione e dalla precisione nel controllo, a beneficio dell'efficienza.

RIDOTTE CORRENTI DI SPUNTO

Ridotte correnti di spunto grazie al rivoluzionario compressore centrifugo.

MASSIMA SILENZIOSITA

Massima silenziosita' ai migliori livelli di mercato, con ridottissime vibrazioni

CONTROLLI DI GRUPPO CON MASTER DINAMICO

Distribuzione del carico, sequenziazione, ridondanza attiva, priorità nell'attivazione delle risorse, gestione allarmi, sono solo alcune delle funzioni che l'unità è in grado di gestire se collegata ad un gruppo LAN di refrigeratori. Grazie alla logica di master dinamico, l'affidabilità del sistema è garantita anche in caso di allarme o malfunzionamento.

FUNZIONE JUMPING STAGING

Regolazione di efficienza che permette di ottenere la resa frigorifera desiderata sempre con la massima efficienza possibile.

- Cofanatura integrale (tipologia base o plus)
- Sistema VPF (Variable Primary Flow)
- Predisposizione connettività remota con schede protocollo Modbus, Bacnet, M-net, Lonworks, Konnex, SNMP
- Dispositivi vari per il controllo della condensazione
- Dispositivo per la rilevazione fughe di refrigerante
- Funzione Internal Leak Detection
- Tastiera interfaccia Touch Screen
- Interfaccia utente KIPlink
- Contatore di energia termica
- Smart current limit

TX2-W-G04/H			0251	0351	0511	0602	0702	0872	1022	1203
Alimentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PRESTAZIONI		** P1.7.1.E	100/0/00			100/0/00			100,0,00	.00,0,00
REFRIGERAZIONE (GROSS VALUE)										
Potenza frigorifera	(1)	kW	254,7	354.0	522,2	611,0	709,2	874,7	1041	1208
Potenza assorbita totale	(1)	kW	49.28	64.91	109.3	114.0	131.2	174.7	218.9	242.2
	(1)	kW/kW	-,-	- ,-			- ,		4,756	
EER	(1)	KVV/KVV	5,166	5,455	4,778	5,360	5,405	5,007	4,750	4,988
REFRIGERAZIONE (EN14511 VALUE)	(4)(0)	1.147	000.0	000.0	405.0	544.0	004.0	705.4	050.5	1010
Potenza frigorifera	(1)(2)	kW	209,3	299,8	425,2	511,6	601,6	725,4	850,5	1016
EER	(1)(2)	kW/kW	5,670	5,780	6,040	5,870	5,790	5,880	5,980	5,750
Classe EUROVENT			-	-	-	-	-	-	-	-
RISCALDAMENTO (GROSS VALUE)										
Potenza termica totale	(3)	kW	297,9	406,7	643,6	731,1	828,8	1034	1269	1398
Potenza assorbita totale	(3)	kW	59,28	84,30	137,4	144,7	169,7	220,6	272,4	299,6
COP		kW/kW	5,024	4,824	4,684	5,053	4,884	4,687	4,659	4,666
RISCALDAMENTO (EN14511 VALUE)										
Potenza termica totale	(3)(2)	kW	263,6	366,2	546,0	642,2	743,4	907,5	1091	1245
COP	(3)(2)	kW/kW	5,040	4,930	5,300	5,140	4,980	5,120	5,240	5,010
Classe EUROVENT										
EFFICIENZA ENERGETICA										
EFFICIENZA STAGIONALE IN RAFFRED	DAMENTO	(Rea. UE	2016/2281)						
Refrigerazione d'ambiente		, 3	31312201	•						
Prated,c	(10)	kW	_	300	425	512	602	725	850	1016
SEER	(10)(11)	ICVV	_	9.15	9.77	9,36	9.25	9.53	10.02	9.33
Rendimento ηs	(10)(11)	%		363	388	371	367	378	398	370
EFFICIENZA STAGIONALE IN RISCALDA				303	300	37 1	301	370	330	370
PDesign	(4)	kW	335	_	_	_	_	_		_
SCOP	(4)(13)	KVV	7,76	-		-				
Rendimento ns	(4)(13)	%	302	-		-		<u> </u>		
Classe di efficienza stagionale	(4)(14)	70	302	-						
	(4)				-	-	-	-	-	-
SCAMBIATORI										
SCAMBIATORE UTENZA IN REFRIGERA										
Portata	(1)	I/s	10,03	14,36	20,35	24,48	28,79	34,72	40,70	48,61
Perdita di carico allo scambiatore	(1)	kPa	26,1	53,4	20,6	22,9	41,3	39,8	25,8	41,3
SCAMBIATORE UTENZA IN RISCALDAN	IENTO									
Portata	(3)	l/s	17,28	17,61	36,11	42,21	40,28	50,00	72,03	61,94
Perdita di carico allo scambiatore	(3)	kPa	77,4	80,4	64,9	68,1	80,7	82,6	80,7	67,1
SCAMBIATORE SORGENTE IN REFRIGE	RAZIONE									
Portata	(1)	l/s	11,70	16,69	23,58	28,47	33,50	40,32	47,21	56,67
Perdita di carico allo scambiatore	(1)	kPa	24,1	26,5	20,2	23,6	32,7	26,1	24,0	23,3
SCAMBIATORE SORGENTE IN RISCALD	AMENTO									
Portata	(3)	l/s	12,71	17,66	26,34	30,98	35,86	43,78	52,62	60,07
Perdita di carico allo scambiatore	(3)	kPa	28,5	29,7	25,2	28,0	37,5	30,8	29,8	26,2
CIRCUITO FRIGORIFERO			-,-	.,.	,-	-,-	,-		-,-	-,-
N. compressori		N°	1	1	1	2	2	2	2	3
N. circuiti		N°	1	1	1	1	1	1	1	1
Carica refrigerante teorica		kg	140	192	240	270	270	415	420	624
LIVELLI SONORI		кy	170	132	2-70	210	210	710	720	024
	(5)	dD/A)	75	76	78	76	77	78	79	79
Pressione sonora totale	(6)(7)	dB(A)	75 93	94	96	95	96	97	98	
Potenza sonora totale in refrigerazione		dB(A)	93	94	96	95 95	96 96	97	98 98	98
Potenza sonora in riscaldamento	(6)(8)	dB(A)	93	94	90	90	90	91	90	90
				2010	2012	0010	0040	2252	2252	
DIMENSIONI E PESI	/=:									
A	(9)	mm	2910	2910	2910	2910	2910	3050	3050	3710
A B	(9)	mm	1000	1000	1000	1560	1560	1620	1620	1710
A										

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.

 Valori riferiti alla normativa EN14511

 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente
- Acqua scanninatore cator ato trenza (in/out) 40 C/45 C, Acqua scanninatore tato sorgente (in/out) 10°C/6,71°C

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, indoors.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 Indice di efficienza energetica stagionale
 Efficienza energetica stagionale del raffreddamento d'ambiente
 Coefficiente di prestazione stagionale
 Efficienza energetica stagionale del rafreddamento d'ambiente

Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R1234ze [GWP₁₀₀ 7] ad effetto serra. Dati certificati in EUROVENT

Pompa di calore ad alta efficienza con sorgente acqua, reversibile lato idraulico

0251 - 2064 254,7-2069 kW

Alimentazione elettrica	TX2-W-G04/H			1314	1363	1404	1553	1584	1914	2064
RESTACION EFFRIGERAZIONE (GROSS VALUE) Value Val	limentazione elettrica		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Petenza fignorifera (1) kW 235,5 298,8 294,6 302,3 288,8 384,6 408,3 2ER (1) kW-255,5 298,8 294,6 302,3 288,8 384,6 408,3 2ER (1) kW-kW 5,601 4,756 5,693 5,151 5,495 5,277 5,067 2ER (1) kW-kW 5,601 4,756 5,693 5,151 5,495 5,277 5,067 2ER (1) kW-kW 5,601 4,756 5,693 5,151 5,495 5,277 5,067 2ER (1) kW-kW 5,601 4,756 5,693 5,151 5,495 5,277 5,067 2ER (1) kW-kW 6,070 5,330 6,130 6,200 6,880 6,190 6,160 2 1,685 2 1,	PRESTAZIONI		'							
The Principal	REFRIGERAZIONE (GROSS VALUE)									
Potenzia assorbita totale		(1)	kW	1319	1383	1421	1557	1587	1924	2069
EER C (1) kW/kW 5,601 4,756 5,693 5,151 5,495 5,277 5,067 REFRIGERAZIONE (EN14511 VALUE) **Polenza figorifera** (1) kW/kW 6,070 5,830 6,130 6,200 6,080 6,190 6,180 c) Lasse EURO/VENT										
Name		. ,								,-
Potenzia frigorifera (1)/2 kW 1108 1146 1197 1264 1319 1571 1681		(-)	1000/1000	0,001	1,700	0,000	0,101	0,100	0,211	0,007
EER		(1)(2)	k\//	1108	1146	1197	1264	1319	1571	1681
Company Comp										
RISCALDAMENTO (GROSS VALUE) 3 kW 1576 1650 1691 1905 1869 2342 2510		(1)(2)	KVV/KVV	-,	-,	,	-,	-,	-,	-,
Potenzia termica totale (3)										
Potenzia assorbita totale (3)		(3)	L///	1576	1650	1601	1005	1860	2342	2510
SECALDAMENTO (EN14511 VALUE) SURVIKW 5,087 4,622 5,055 4,867 4,877 4,934 4,797 4,934 4,94										
RISCALDAMENTO (EN14511 VALUE) Value Valu		(3)						,		
Potenzia termica totale (3)(2) kW 1394 1448 1494 1623 1639 2009 2146 2009 2009 2009 2009 2146 2009 20			KVV/KVV	5,067	4,022	5,055	4,007	4,077	4,934	4,797
Color		(3)(2)	1.107	1204	1//0	1404	1600	1620	2000	2116
Classe EUROVENT SerFICIENZA STAGIONALE IN RAFFREDDAMENTO (Reg. UE 2016/2281) SerFICIENZA STAGIONALE IN RAFFREDDAMENTO (Reg. UE 2016/2281) SerFICIENZA STAGIONALE IN RISCALDAMENTO (Reg. UE 813/2013) SerFICIENZA IN REFRIGERAZIONE (Reg. UE 813/2013) SerFICIENZA IN RISCALDAMENTO		. , . ,								
EFFICIENZA STAGIONALE IN RAFREDDAMENTO (Reg. UE 2016/2281) Refrigerazione d'ambiente Prated,c (10) (11) 8,750 9,31 9,65 10,16 9,54 9,83 10,13 SEER (10)(11) 9,50 9,31 9,65 10,16 9,54 9,83 10,13 Rendimento nps (10)(12) % 377 369 383 403 379 390 402 EFFICIENZA STAGIONALE IN RISCALDAMENTO (Reg. UE 813/2013) PDesign (4) KW		(3)(2)	KVV/KVV	5,210	5,090	5,210	5,410	5,200	5,380	5,370
Terricienza STAGIONALE IN RAFFREDDAMENTO (Reg. UE 2016/2281) Totaled, control of ambiente										
Refrigerazione d'ambiente Prated_C (10)										
Prated_c		AMENTO	(Reg. UE	2016/2281)					
SEER										
Rendimento ns (10)(12) % 377 369 383 403 379 390 402 EFFICIENZA STAGIONALE IN RISCALDAMENTO (Reg. UE 813/2013) Design (4) kW		, ,	kW							
Company Comp										
Color Colo		. , , ,			369	383	403	379	390	402
COP (4)(13)				313/2013)						
Classe di efficienza stagionale (4) (4) (4) (7)			kW	-	-	-	-	-	-	-
Classe di efficienza stagionale (4)				-	-	-	-	-	-	-
SCAMBIATORI SCAMBIATORE UTENZA IN REFRIGERAZIONE Orditata (1)		(4)(14)	%	-	-	-	-	-	-	-
CAMBIATORE UTENZA IN REFRIGERAZIONE	Classe di efficienza stagionale	(4)		-	-	-	-	-	-	-
Portata (1) I/s 53,01 54,82 57,29 60,49 63,11 75,18 80,42 Perdita di carico allo scambiatore (1) kPa 32,0 26,1 37,4 25,6 45,4 26,4 30,2 CEMBIATORE UTENZA IN RISCALDAMENTO CONTROL (3) I/s 85,28 87,78 85,28 107,9 85,28 133,4 134,2 Perdita di carico allo scambiatore (3) kPa 82,9 66,9 82,9 81,5 82,9 83,1 84,0 CEMBIATORE SORGENTE IN REFRIGERAZIONE CONTROL (1) I/s 61,36 63,83 66,22 69,85 72,96 86,83 92,94 Perdita di carico allo scambiatore (1) kPa 24,4 24,8 24,4 24,7 29,7 27,4 23,5 CEMBIATORE SORGENTE IN RISCALDAMENTO Portata (3) I/s 67,26 69,88 72,08 78,33 79,09 96,95 103,6 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 CERCUITO FRIGORIFERO IN SCAMBIATORE SORGENTE IN RISCALDAMENTO SCAMBIATORE SCAMBIATORE SORGENTE IN RISCALDAMENTO SCAMBIATORE SCAM	SCAMBIATORI									
Perdita di carico allo scambiatore (1) kPa 32,0 26,1 37,4 25,6 45,4 26,4 30,2 25 37,4 25,6 45,4 26,4 30,2 32,0 26,1 37,4 25,6 45,4 26,4 30,2 32,0 26,1 37,4 25,6 45,4 26,4 30,2 32,0 26,1 37,4 25,6 45,4 26,4 30,2 32,0 32,0 32,0 32,0 32,0 32,0 32,0	SCAMBIATORE UTENZA IN REFRIGERAZ	IONE								
Cambiatore Cam	Portata	(1)	l/s	53,01	54,82	57,29	60,49	63,11	75,18	80,42
SCAMBIATORE UTENZA IN RISCALDAMENTO	Perdita di carico allo scambiatore	(1)	kPa	32,0	26,1	37,4	25,6	45,4	26,4	30,2
Portata (3) I/s 85,28 87,78 85,28 107,9 85,28 133,4 134,2 Perdita di carico allo scambiatore (3) kPa 82,9 66,9 82,9 81,5 82,9 83,1 84,0 SCAMBIATORE SORGENTE IN REFRIGERAZIONE (1) I/s 61,36 63,83 66,22 69,85 72,96 86,83 92,94 Perdita di carico allo scambiatore (1) kPa 24,4 24,8 24,4 24,7 29,7 27,4 23,5 SCAMBIATORE SORGENTE IN RISCALDAMENTO Portata (3) I/s 67,26 69,88 72,08 78,33 79,09 96,95 103,6 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita d	SCAMBIATORE UTENZA IN RISCALDAME	NTO								
Perdita di carico allo scambiatore (3) kPa 82,9 66,9 82,9 81,5 82,9 83,1 84,0 SCAMBIATORE SORGENTE IN REFRIGERAZIONE Portata (1) l/s 61,36 63,83 66,22 69,85 72,96 86,83 92,94 Perdita di carico allo scambiatore (1) kPa 24,4 24,8 24,4 24,7 29,7 27,4 23,5 SCAMBIATORE SORGENTE IN RISCALDAMENTO Portata (3) l/s 67,26 69,88 72,08 78,33 79,09 96,95 103,6 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 CIRCUITO FRIGORIFERO N. compressori N° 4 3 4 3 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1			l/s	85,28	87.78	85.28	107.9	85.28	133.4	134,2
Contact			., -		- , -					- /
Portata (1)		. ,	•	,-	,-	,-	,-	,-	,	, -
Perdita di carico allo scambiatore (1) kPa 24,4 24,8 24,8 24,4 24,7 29,7 27,4 23,5 CAMBIATORE SORGENTE IN RISCALDAMENTO Portata (3) l/s 67,26 69,88 72,08 78,33 79,09 96,95 103,6 erdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 CIRCUITO FRIGORIFERO N. compressori N° 4 3 4 3 4 4 4 4 4 4 A Carico refrigerante teorica kg 730 615 1000 850 1000 1070 1070 1070 LIVELLI SONORI Pressione sonora totale in refrigerazione (6)(7) dB(A) 98 99 98 99 99 100 100 100 Potenza sonora in riscaldamento (6)(8) dB(A) 98 99 98 99 99 100 100 DIMENSIONI E PESI A (9) mm 4690 3710 4720 4690 4720 4720 4720 4720 4720 4720 4720 472			1/9	61.36	63 83	66 22	69 85	72 96	86 83	92.94
Contain		. ,			,	,	,	,	,	- ,-
Portata (3) I/s 67,26 69,88 72,08 78,33 79,09 96,95 103,6 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 Perdita di carico allo scambiatore VIV. Compressori VIV. Compres		. ,	in a	, .	_1,0	_ 1, 1	- 1,1	_0,1	,,	
Perdita di carico allo scambiatore (3) kPa 29,3 29,7 29,0 31,0 34,9 34,1 29,2 20,0 20,0 20,0 31,0 34,9 34,1 29,2 20,0 20,0 20,0 20,0 20,0 20,0 20,0			I/e	67 26	69.88	72 NA	78 33	79 NQ	96 95	103.6
N. compressori N° 4 3 4 3 4 4 4 4 4 4										
N. compressori		(0)	ni a	20,0	20,1	20,0	01,0	04,0	0-7, 1	20,2
N° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			NI°	1	2	A	2	1	1	1
Carica refrigerante teorica kg 730 615 1000 850 1000 1070 1070 LIVELLI SONORI Pressione sonora totale (5) dB(A) 78 80 78 79 79 80 80 Potenza sonora totale in refrigerazione (6)(7) dB(A) 98 99 98 99 99 100 100 Potenza sonora in riscaldamento (6)(8) dB(A) 98 99 98 99 99 100 100 DIMENSIONI E PESI A (9) mm 4690 3710 4720 4690 4720 4720 4720 33 (9) mm 1890 1710 1890 1660 1890 1890 1890 14 (9) mm 2400 2260 2400 2260 2400 2400 2400 2400										
Pressione sonora totale (5) dB(A) 78 80 78 79 79 80 80 80 80 80 80 80 8								•		
Pressione sonora totale (5) dB(A) 78 80 78 79 79 80 80 Potenza sonora totale in refrigerazione (6)(7) dB(A) 98 99 98 99 99 100 100 Potenza sonora in riscaldamento (6)(8) dB(A) 98 99 98 99 99 100 100 DIMENSIONI E PESI (9) mm 4690 3710 4720 4690 4720 4720 4720 B (9) mm 1890 1710 1890 1660 1890 1890 1890 H (9) mm 2400 2260 2400 2260 2400 2400 2400			kg	730	010	1000	650	1000	1070	1070
Potenza sonora totale in refrigerazione (6)(7) dB(A) 98 99 98 99 99 100 100 Potenza sonora in riscaldamento (6)(8) dB(A) 98 99 98 99 99 100 100 DIMENSIONI E PESI A (9) mm 4690 3710 4720 4690 4720 4720 4720 B (9) mm 1890 1710 1890 1660 1890 1890 1890 H (9) mm 2400 2260 2400 2260 2400 2400 2400 2400		(F)	-ID/A\	70	00	70	70	70	00	00
Potenza sonora in riscaldamento (6)(8) dB(A) 98 99 98 99 99 100 100 DIMENSIONI E PESI A (9) mm 4690 3710 4720 4690 4720 4720 4720 4720 B (9) mm 1890 1710 1890 1660 1890 1890 1890 H (9) mm 2400 2260 2400 2260 2400 2400 2400										
Simemonia Sime										
A (9) mm 4690 3710 4720 4690 4720 4720 4720 4720 B (9) mm 1890 1710 1890 1660 1890 1890 1890 H (9) mm 2400 2260 2400 2260 2400 2400 2400		(6)(8)	aR(A)	98	99	98	99	99	100	100
3 (9) mm 1890 1710 1890 1660 1890 1890 1890 H (9) mm 2400 2260 2400 2260 2400 2400 2400										
H (9) mm 2400 2260 2400 2260 2400 2400 2400 2400										
1,										
Peso in funzionamento (9) kg 8520 7040 9760 7950 9760 10130 10340										
	Peso in funzionamento	(9)	kg	8520	7040	9760	7950	9760	10130	10340

Note

- 1 Acqua scambiatore freddo lato utenza (in/out) 12°C/7°C; Acqua scambiatore lato sorgente
- (in/out) 30°C/35°C.

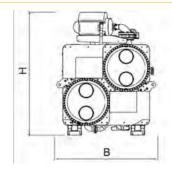
 Valori riferiti alla normativa EN14511

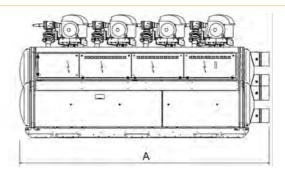
 Acqua scambiatore caldo lato utenza (in/out) 40°C/45°C; Acqua scambiatore lato sorgente
- Acqua scanninatore calco ato trenza (in/out) 40 c/45 C, Acqua scanninatore lato sorgene (in/out) 10°C/6,71°C

 Parametro calcolato per applicazione a BASSA TEMPERATURA in condizioni climatiche AVERAGE in accordo con il [REGOLAMENTO (UE) N. 813/2013]

 Livello di pressione sonora medio a 1m di distanza, per unità in campo libero su superficie riflettente; valore non vincolante calcolato dalla potenza sonora.
- Potenza sonora sulla base di misure effettuate in accordo alla normativa ISO 9614.
 Potenza sonora in refrigerazione, indoors.
 Potenza sonora in riscaldamento, indoors.
 Unità in configurazione ed esecuzione standard, priva di accessori opzionali.
 Parametro calcolato in accordo con il [REGOLAMENTO (UE) N. 2016/2281]
 Indice di efficienza energetica stagionale
 Efficienza energetica stagionale del raffreddamento d'ambiente
 Goefficiente di prestazione stagionale
 Efficienza energetica stagionale del riscaldamento d'ambiente

- Le unità, evidenziate nella presente pubblicazione, contengono gas fluorurato R1234ze [GWP100 7] ad effetto serra.





CLIMATIZZAZIONE

Mitsubishi Electric Europe B.V. filiale italiana

Via Energy Park, 14 20871 Vimercate (MB) Telefono: +39 039 60531 Fax: +39 039 6057694 e-mail: clima@it.mee.com

SEGUICI SU

SCARICA LE APP UFFICIALI

Le apparecchiature descritte nella presente bruchure contengono gas fluorurati ad effetto serra di tipo HFC on GWP > 1. L'installazione di tali apparecchiature dovrà essere effettuata da personale qualificato ai sensi dei regolamenti europei 303/2008 e 517/2014.

Brochure pompe di calore - COMFORT (2024) I-2407308 (18752)

Mitsubishi Electric si riserva il diritto di modificare in qualsiasi momento e senza preavviso i dati del presente stampato.

Ogni riproduzione, anche se parziale, è vietata.

